152 research outputs found
How to Display Group Information on Node-Link Diagrams: An Evaluation
We present the results of evaluating four techniques for displaying group or cluster information overlaid on node-link diagrams: node coloring, GMap, BubbleSets, and LineSets. The contributions of the paper are three fold. First, we present quantitative results and statistical analyses of data from an online study in which approximately 800 subjects performed 10 types of group and network tasks in the four evaluated visualizations. Specifically, we show that BubbleSets is the best alternative for tasks involving group membership assessment; that visually encoding group information over basic node-link diagrams incurs an accuracy penalty of about 25 percent in solving network tasks; and that GMap's use of prominent group labels improves memorability. We also show that GMap's visual metaphor can be slightly altered to outperform BubbleSets in group membership assessment. Second, we discuss visual characteristics that can explain the observed quantitative differences in the four visualizations and suggest design recommendations. This discussion is supported by a small scale eye-tracking study and previous results from the visualization literature. Third, we present an easily extensible user study methodology
Telocytes of the mammary gland stroma
Although confusions persist in what concerns the terminologies used for describing the fibroblastoid cells of the stromal compartments, the expression of antigens in such cells gradually directs their diagnosis towards a stem/progenitor phenotype. The stromal cells with long, slender and moniliform prolongations were named “telocytes” (TCs), their cell processes being termed “telopodes”. However, the mammary gland TCs were not evaluated for the CD34 expression. Thus an in vivo immunohistochemical study was designed; antibodies against CD10, CD34, CD117/c-kit and vimentin were applied on human mammary gland samples of 8 donor patients. Resident CD34-positive stromal cells positive for the TCs morphology were found building consistent stromal networks and ensheathing microvessels and excretory units. Such cells were CD10±/c-kit-/vimentin+. According to the current concepts regarding the in vivo stem/progenitor cells the CD34+ TCs of the mammary stroma could be actors in the mammary stem niche and their antigens expression could relate to different stages of differentiation
Recommended from our members
What Google Maps can do for biomedical data dissemination: examples and a design study
BACKGROUND: Biologists often need to assess whether unfamiliar datasets warrant the time investment required for more detailed exploration. Basing such assessments on brief descriptions provided by data publishers is unwieldy for large datasets that contain insights dependent on specific scientific questions. Alternatively, using complex software systems for a preliminary analysis may be deemed as too time consuming in itself, especially for unfamiliar data types and formats. This may lead to wasted analysis time and discarding of potentially useful data.
RESULTS: We present an exploration of design opportunities that the Google Maps interface offers to biomedical data visualization. In particular, we focus on synergies between visualization techniques and Google Maps that facilitate the development of biological visualizations which have both low-overhead and sufficient expressivity to support the exploration of data at multiple scales. The methods we explore rely on displaying pre-rendered visualizations of biological data in browsers, with sparse yet powerful interactions, by using the Google Maps API. We structure our discussion around five visualizations: a gene co-regulation visualization, a heatmap viewer, a genome browser, a protein interaction network, and a planar visualization of white matter in the brain. Feedback from collaborative work with domain experts suggests that our Google Maps visualizations offer multiple, scale-dependent perspectives and can be particularly helpful for unfamiliar datasets due to their accessibility. We also find that users, particularly those less experienced with computer use, are attracted by the familiarity of the Google Maps API. Our five implementations introduce design elements that can benefit visualization developers.
CONCLUSIONS: We describe a low-overhead approach that lets biologists access readily analyzed views of unfamiliar scientific datasets. We rely on pre-computed visualizations prepared by data experts, accompanied by sparse and intuitive interactions, and distributed via the familiar Google Maps framework. Our contributions are an evaluation demonstrating the validity and opportunities of this approach, a set of design guidelines benefiting those wanting to create such visualizations, and five concrete example visualizations
- …