798 research outputs found
Micro-SQUID technique for studying the temperature dependence of switching fields of single nanoparticles
An improved micro-SQUID technique is presented allowing us to measure the
temperature dependence of the magnetisation switching fields of single
nanoparticles well above the critical superconducting temperature of the SQUID.
Our first measurements on 3 nm cobalt nanoparticle embedded in a niobium matrix
are compared to the Neel Brown model describing the magnetisation reversal by
thermal activation over a single anisotropy barrier.Comment: 3 pages, 4 figures; conference proceeding: 1st Joint European
Magnetic Symposia (JEMS'01), Grenoble (France), 28th August - 1st September,
200
Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy
The time and field dependence of the magnetic domain structure at
magnetization reversal were investigated by Kerr microscopy in interacting
ferromagnetic Co/Pt multilayers with perpendicular anisotropy. Large local
inhomogeneous magnetostatic fields favor mirroring domain structures and domain
decoration by rings of opposite magnetization. The long range nature of these
magnetostatic interactions gives rise to ultra-slow dynamics even in zero
applied field, i.e. it affects the long time domain stability. Due to this
additionnal interaction field, the magnetization reversal under short magnetic
field pulses differs markedly from the well-known slow dynamic behavior.
Namely, in high field, the magnetization of the coupled harder layer has been
observed to reverse more rapidly by domain wall motion than the softer layer
alone.Comment: 42 pages including 17 figures. submitted to JA
Spinodal nanodecomposition in magnetically doped semiconductors
This review presents the recent progress in computational materials design,
experimental realization, and control methods of spinodal nanodecomposition
under three- and two-dimensional crystal-growth conditions in spintronic
materials, such as magnetically doped semiconductors. The computational
description of nanodecomposition, performed by combining first-principles
calculations with kinetic Monte Carlo simulations, is discussed together with
extensive electron microscopy, synchrotron radiation, scanning probe, and ion
beam methods that have been employed to visualize binodal and spinodal
nanodecomposition (chemical phase separation) as well as nanoprecipitation
(crystallographic phase separation) in a range of semiconductor compounds with
a concentration of transition metal (TM) impurities beyond the solubility
limit. The role of growth conditions, co-doping by shallow impurities, kinetic
barriers, and surface reactions in controlling the aggregation of magnetic
cations is highlighted. According to theoretical simulations and experimental
results the TM-rich regions appear either in the form of nanodots (the {\em
dairiseki} phase) or nanocolumns (the {\em konbu} phase) buried in the host
semiconductor. Particular attention is paid to Mn-doped group III arsenides and
antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped
group II chalcogenides, in which ferromagnetic features persisting up to above
room temperature correlate with the presence of nanodecomposition and account
for the application-relevant magneto-optical and magnetotransport properties of
these compounds. Finally, it is pointed out that spinodal nanodecomposition can
be viewed as a new class of bottom-up approach to nanofabrication.Comment: 72 pages, 79 figure
Interface magnetic anisotropy in cobalt clusters embedded in a platinum or niobium matrix
A low concentration of cobalt clusters with a fcc structure and containing
almost one thousand atoms are embedded in two different metallic matrices:
platinum and niobium. Samples have been prepared using a co-deposition
technique. Cobalt clusters preformed in the gas phase and matrix atoms are
simultaneously deposited on a silicon substrate under Ultra High Vacuum
conditions. This original technique allows to prepare nanostructured systems
from miscible elements such as Co/Pt and Co/Nb in which clusters keep a pure
cobalt core surrounded with an alloyed interface. Magnetic measurements
performed using a Vibrating Sample Magnetometer (VSM) reveal large differences
in the magnetic properties of cobalt clusters in Pt and Nb pointing out the key
role of cluster/matrix interfaces.Comment: 7 pages (LaTeX), 12 PostScript figures, 1 PostScript tabl
A fault-tolerant variational quantum algorithm with limited T-depth
We propose a variational quantum eigensolver (VQE) algorithm that uses a fault-tolerant (FT) gate-set, and is hence suitable for implementation on a future error-corrected quantum computer. VQE quantum circuits are typically designed for near-term, noisy quantum devices and have continuously parameterized rotation gates as the central building block. On the other hand, an FT quantum computer (FTQC) can only implement a discrete set of logical gates, such as the so-called Clifford+T gates. We show that the energy minimization of VQE can be performed with such an FT discrete gate-set, where we use the Ross-Selinger algorithm to transpile the continuous rotation gates to the error-correctable Clifford+T gate-set. We find that there is no loss of convergence when compared to the one of parameterized circuits if an adaptive accuracy of the transpilation is used in the VQE optimization. State preparation with VQE requires only a moderate number of T-gates, depending on the system size and transpilation accuracy. We demonstrate these properties on emulators for two prototypical spin models with up to 16 qubits. This is a promising result for the integration of VQE and more generally variational algorithms in the emerging FT setting, where they can form building blocks of the general quantum algorithms that will become accessible in an FTQC
- …