798 research outputs found

    Micro-SQUID technique for studying the temperature dependence of switching fields of single nanoparticles

    Full text link
    An improved micro-SQUID technique is presented allowing us to measure the temperature dependence of the magnetisation switching fields of single nanoparticles well above the critical superconducting temperature of the SQUID. Our first measurements on 3 nm cobalt nanoparticle embedded in a niobium matrix are compared to the Neel Brown model describing the magnetisation reversal by thermal activation over a single anisotropy barrier.Comment: 3 pages, 4 figures; conference proceeding: 1st Joint European Magnetic Symposia (JEMS'01), Grenoble (France), 28th August - 1st September, 200

    Marie de l’Incarnation

    Get PDF

    Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy

    Full text link
    The time and field dependence of the magnetic domain structure at magnetization reversal were investigated by Kerr microscopy in interacting ferromagnetic Co/Pt multilayers with perpendicular anisotropy. Large local inhomogeneous magnetostatic fields favor mirroring domain structures and domain decoration by rings of opposite magnetization. The long range nature of these magnetostatic interactions gives rise to ultra-slow dynamics even in zero applied field, i.e. it affects the long time domain stability. Due to this additionnal interaction field, the magnetization reversal under short magnetic field pulses differs markedly from the well-known slow dynamic behavior. Namely, in high field, the magnetization of the coupled harder layer has been observed to reverse more rapidly by domain wall motion than the softer layer alone.Comment: 42 pages including 17 figures. submitted to JA

    Spinodal nanodecomposition in magnetically doped semiconductors

    Full text link
    This review presents the recent progress in computational materials design, experimental realization, and control methods of spinodal nanodecomposition under three- and two-dimensional crystal-growth conditions in spintronic materials, such as magnetically doped semiconductors. The computational description of nanodecomposition, performed by combining first-principles calculations with kinetic Monte Carlo simulations, is discussed together with extensive electron microscopy, synchrotron radiation, scanning probe, and ion beam methods that have been employed to visualize binodal and spinodal nanodecomposition (chemical phase separation) as well as nanoprecipitation (crystallographic phase separation) in a range of semiconductor compounds with a concentration of transition metal (TM) impurities beyond the solubility limit. The role of growth conditions, co-doping by shallow impurities, kinetic barriers, and surface reactions in controlling the aggregation of magnetic cations is highlighted. According to theoretical simulations and experimental results the TM-rich regions appear either in the form of nanodots (the {\em dairiseki} phase) or nanocolumns (the {\em konbu} phase) buried in the host semiconductor. Particular attention is paid to Mn-doped group III arsenides and antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped group II chalcogenides, in which ferromagnetic features persisting up to above room temperature correlate with the presence of nanodecomposition and account for the application-relevant magneto-optical and magnetotransport properties of these compounds. Finally, it is pointed out that spinodal nanodecomposition can be viewed as a new class of bottom-up approach to nanofabrication.Comment: 72 pages, 79 figure

    Interface magnetic anisotropy in cobalt clusters embedded in a platinum or niobium matrix

    Full text link
    A low concentration of cobalt clusters with a fcc structure and containing almost one thousand atoms are embedded in two different metallic matrices: platinum and niobium. Samples have been prepared using a co-deposition technique. Cobalt clusters preformed in the gas phase and matrix atoms are simultaneously deposited on a silicon substrate under Ultra High Vacuum conditions. This original technique allows to prepare nanostructured systems from miscible elements such as Co/Pt and Co/Nb in which clusters keep a pure cobalt core surrounded with an alloyed interface. Magnetic measurements performed using a Vibrating Sample Magnetometer (VSM) reveal large differences in the magnetic properties of cobalt clusters in Pt and Nb pointing out the key role of cluster/matrix interfaces.Comment: 7 pages (LaTeX), 12 PostScript figures, 1 PostScript tabl

    A fault-tolerant variational quantum algorithm with limited T-depth

    Get PDF
    We propose a variational quantum eigensolver (VQE) algorithm that uses a fault-tolerant (FT) gate-set, and is hence suitable for implementation on a future error-corrected quantum computer. VQE quantum circuits are typically designed for near-term, noisy quantum devices and have continuously parameterized rotation gates as the central building block. On the other hand, an FT quantum computer (FTQC) can only implement a discrete set of logical gates, such as the so-called Clifford+T gates. We show that the energy minimization of VQE can be performed with such an FT discrete gate-set, where we use the Ross-Selinger algorithm to transpile the continuous rotation gates to the error-correctable Clifford+T gate-set. We find that there is no loss of convergence when compared to the one of parameterized circuits if an adaptive accuracy of the transpilation is used in the VQE optimization. State preparation with VQE requires only a moderate number of T-gates, depending on the system size and transpilation accuracy. We demonstrate these properties on emulators for two prototypical spin models with up to 16 qubits. This is a promising result for the integration of VQE and more generally variational algorithms in the emerging FT setting, where they can form building blocks of the general quantum algorithms that will become accessible in an FTQC
    corecore