1,721 research outputs found

    Phonon-Induced Rabi-Frequency Renormalization of Optically Driven Single InGaAs/GaAs Quantum Dots

    Get PDF
    The authors thank the EPSRC (U.K.) EP/G001642, and the QIPIRC U.K. for financial support. A. N. is supported by the EPSRC and B.W. L. by the Royal Society.We study optically driven Rabi rotations of a quantum dot exciton transition between 5 and 50 K, and for pulse areas of up to 14 pi. In a high driving field regime, the decay of the Rabi rotations is nonmonotonic, and the period decreases with pulse area and increases with temperature. By comparing the experiments to a weak-coupling model of the exciton-phonon interaction, we demonstrate that the observed renormalization of the Rabi frequency is induced by fluctuations in the bath of longitudinal acoustic phonons, an effect that is a phonon analogy of the Lamb shift.Peer reviewe

    Uncoupled excitons in semiconductor microcavities detected in resonant Raman scattering

    Get PDF
    We present an outgoing resonant Raman-scattering study of a GaAs/AlGaAs based microcavity embedded in a p-i-n junction. The p-i-n junction allows the vertical electric field to be varied, permitting control of exciton-photon detuning and quenching of photoluminescence which otherwise obscures the inelastic light scattering signals. Peaks corresponding to the upper and lower polariton branches are observed in the resonant Raman cross sections, along with a third peak at the energy of uncoupled excitons. This third peak, attributed to disorder activated Raman scattering, provides clear evidence for the existence of uncoupled exciton reservoir states in microcavities in the strong-coupling regime

    Overhauser effect in individual InP/GaInP dots

    Full text link
    Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a wide range of external magnetic fields B_ext=0-5T by circularly polarized optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of the nuclear spin on the spin pumping efficiency. This feedback, produced by the Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when the Overhauser field cancels the external field. This counter-intuitive result is shown to arise from the opposite contribution of the electron and hole Zeeman splittings to the total exciton Zeeman energy

    Fast preparation of single hole spin in InAs/GaAs quantum dot in Voigt geometry magnetic field

    Full text link
    The preparation of a coherent heavy-hole spin via ionization of a spin-polarized electron-hole pair in an InAs/GaAs quantum dot in a Voigt geometry magnetic field is investigated. For a dot with a 17 ueV bright-exciton fine-structure splitting, the fidelity of the spin preparation is limited to 0.75, with optimum preparation occurring when the effective fine-structure of the bright-exciton matches the in-plane hole Zeeman energy. In principle, higher fidelities can be achieved by minimizing the bright-exciton fine-structure splitting.Comment: 8 pages, 10 figs, published PRB 85 155310 (2012

    Overhauser effect in individual InP/GaInP dots

    Get PDF
    Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a wide range of external magnetic fields B_ext=0-5T by circularly polarized optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of the nuclear spin on the spin pumping efficiency. This feedback, produced by the Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when the Overhauser field cancels the external field. This counter-intuitive result is shown to arise from the opposite contribution of the electron and hole Zeeman splittings to the total exciton Zeeman energy

    Voltage controlled nuclear polarization switching in a single InGaAs quantum dot

    Full text link
    Sharp threshold-like transitions between two stable nuclear spin polarizations are observed in optically pumped individual InGaAs self-assembled quantum dots embedded in a Schottky diode when the bias applied to the diode is tuned. The abrupt transitions lead to the switching of the Overhauser field in the dot by up to 3 Tesla. The bias-dependent photoluminescence measurements reveal the importance of the electron-tunneling-assisted nuclear spin pumping. We also find evidence for the resonant LO-phonon-mediated electron co-tunneling, the effect controlled by the applied bias and leading to the reduction of the nuclear spin pumping rate.Comment: 5 pages, 2 figures, submitted to Phys Rev

    Fast optical preparation, control, and readout of a single quantum dot spin

    Get PDF
    We propose and demonstrate the sequential initialization, optical control, and readout of a single spin trapped in a semiconductor quantum dot. Hole spin preparation is achieved through ionization of a resonantly excited electron-hole pair. Optical control is observed as a coherent Rabi rotation between the hole and charged-exciton states, which is conditional on the initial hole spin state. The spin-selective creation of the charged exciton provides a photocurrent readout of the hole spin state. © 2008 The American Physical Society
    • …
    corecore