8,944 research outputs found

    Priority monism and essentiality of fundamentality: a reply to Steinberg

    Get PDF
    Steinberg has recently proposed an argument against Schaffer’s priority monism. The argument assumes the principle of Necessity of Monism, which states that if priority monism is true, then it is necessarily true. In this paper, I argue that Steinberg’s objection can be eluded by giving up Necessity of Monism for an alternative principle, that I call Essentiality of Fundamentality, and that such a principle is to be preferred to Necessity of Monism on other grounds as well

    Impact hazard protection efficiency by a small kinetic impactor

    Get PDF
    In this paper the ability of a small kinetic impactor spacecraft to mitigate an Earth-threatening asteroid is assessed by means of a novel measure of efficiency. This measure estimates the probability of a space system to deflect a single randomly-generated Earth-impacting object to a safe distance from the Earth. This represents a measure of efficiency that is not biased by the orbital parameters of a test-case object. A vast number of virtual Earth-impacting scenarios are investigated by homogenously distributing in orbital space a grid of 17,518 Earth impacting trajectories. The relative frequency of each trajectory is estimated by means Opik’s theory and Bottke’s near Earth objects model. A design of the entire mitigation mission is performed and the largest deflected asteroid computed for each impacting trajectory. The minimum detectable asteroid can also be estimated by an asteroid survey model. The results show that current technology would likely suffice against discovered airburst and local damage threats, whereas larger space systems would be necessary to reliably tackle impact hazard from larger threats. For example, it is shown that only 1,000 kg kinetic impactor would suffice to mitigate the impact threat of 27.1% of objects posing similar threat than that posed by Apophis

    Speech Processing Approach for Diagnosing Dementia in an Early Stage

    Get PDF
    The clinical diagnosis of Alzheimer’s disease and other dementias is very challenging, especially in the early stages. Our hypothesis is that any disease that affects particular brain regions involved in speech production and processing will also leave detectable finger prints in the speech. Computerized analysis of speech signals and computational linguistics have progressed to the point where an automatic speech analysis system is a promising approach for a low-cost non-invasive diagnostic tool for early detection of Alzheimer’s disease.We present empirical evidence that strong discrimination between subjects with a diagnosis of probable Alzheimer’s versus matched normal controls can be achieved with a combination of acoustic features from speech, linguistic features extracted from an automatically determined transcription of the speech including punctuation, and results of a mini mental state exam (MMSE). We also show that discrimination is nearly as strong even if the MMSE is not used, which implies that a fully automated system is feasible. Since commercial automatic speech recognition (ASR) tools were unable to provide transcripts for about half of our speech samples, a customized ASR system was developed

    Mass modification of D-meson in hot hadronic matter

    Get PDF
    We evaluate the in-medium DD and Dˉ\bar D-meson masses in hot hadronic matter induced by interactions with the light hadron sector described in a chiral SU(3) model. The effective Lagrangian approach is generalized to SU(4) to include charmed mesons. We find that the D-mass drops substantially at finite temperatures and densities, which open the channels of the decay of the charmonium states (Ψ′\Psi^\prime, χc\chi_c, J/ΨJ/\Psi) to DDˉD \bar D pairs in the thermal medium. The effects of vacuum polarisations from the baryon sector on the medium modification of the DD-meson mass relative to those obtained in the mean field approximation are investigated. The results of the present work are compared to calculations based on the QCD sum-rule approach, the quark-meson coupling model, chiral perturbation theory, as well as to studies of quarkonium dissociation using heavy quark potential from lattice QCD.Comment: 18 pages including 7 figures, minor revision of the text, figure styles modified, to appear in Phys. Rev.

    Mantle Water Contents Beneath the Rio Grande Rift (NM, USA): FTIR Analysis of Rio Puerco and Kilbourne Hole Peridotite Xenoliths

    Get PDF
    Peridotite xenoliths from the Rio Grande Rift (RGR) are being analyzed for H (sub 2) O contents by FTIR (Fourier Transform Infrared) as well as for major and trace element compositions. Nine samples are from the Rio Puerco Volcanic Field (RP) which overlaps the central RGR and southeastern Colorado Plateau; seventeen samples are from Kilbourne Hole (KH) in the southern RGR. Spinel Cr# (Cr/(Cr+Al)) (0.08-0.46) and olivine Mg# (Mg/(Mg plus Fe)) (0.883-0.911) of all RGR samples fall within the olivine-spinel mantle array from [1], an indicator that peridotites are residues of partial melting. Pyroxene H (sub 2) O in KH correlate with bulk rock and pyroxene Al (sub 2) O (sub 3).The KH clinopyroxene rare earth element (REE) variations fit models of 0-13 percent fractional melting of a primitive upper mantle. Most KH peridotites have bulk-rock light REE depleted patterns, but five are enriched in light REEs consistent with metasomatism. Variation in H (sub 2) O content is unrelated to REE enrichment. Metasomatism is seen in RP pyroxenite xenoliths [2] and will be examined in the peridotites studied here. Olivine H (sub 2) O contents are low (less than or equal to 15 parts per million), and decrease from core to rim within grains. This is likely due to H loss during xenolith transport by the host magma [3]. Diffusion models of H suggest that mantle H (sub 2) O contents are still preserved in cores of KH olivine, but not RP olivine. The average H (sub 2) O content of Colorado Plateau clinopyroxene (670 parts per million) [4] is approximately 300 parts per million higher than RGR clinopyroxene (350 parts per million). This upholds the hypothesis that hydration-induced lithospheric melting occurred during flat-slab subduction of the Farallon plate [5]. Numerical models indicate hydration via slab fluids is possible beneath the plateau, approximately 600 kilometers from the paleo-trench, but less likely approximately 850 kilometers away beneath the rift [6]

    Enslaved Phase-Separation Fronts in One-Dimensional Binary Mixtures

    Full text link
    Phase-separation fronts leave in their wakes morphologies that are substantially different from the morphologies formed in homogeneous phase-separation. In this paper we focus on fronts in binary mixtures that are enslaved phase-separation fronts, i.e. fronts that follow in the wake of a control-parameter front. In the one-dimensional case, which is the focus of this paper, the formed morphology is deceptively simple: alternating domains of a regular size. However, determining the size of these domains as a function of the front speed and other system parameters is a non-trivial problem. We present an analytical solution for the case where no material is deposited ahead of the front and numerical solutions and scaling arguments for more general cases. Through these enslaved phase-separation fronts large domains can be formed that are practically unattainable in homogeneous one-dimensional phase-separation
    • …
    corecore