884 research outputs found

    How Cooperative are the Dynamics in Tunneling Systems? A Computer Study for an Atomic Model Glass

    Full text link
    Via computer simulations of the standard binary Lennard-Jones glass former we have obtained in a systematic way a large set of close-by pairs of minima on the potential energy landscape, i.e. double-well potentials (DWP). We analyze this set of DWP in two directions. At low temperatures the symmetric DWP give rise to tunneling systems. We compare the resulting low-temperature anomalies with those, predicted by the standard tunneling model. Deviations can be traced back to the energy dependence of the relevant quantities like the number of tunneling systems. Furthermore we analyze the local structure around a DWP as well as the translational pattern during the transition between both minima. Local density anomalies are crucial for the formation of a tunneling system. Two very different kinds of tunneling systems are observed, depending on the type of atom (small or large) which forms the center of the tunneling system. In the first case the tunneling system can be interpreted as a single-particle motion, in the second case it is more collective

    Lexical stress information modulates the time-course of spoken-word recognition

    Get PDF
    Segmental as well as suprasegmental information is used by Dutch listeners to recognize words. The time-course of the effect of suprasegmental stress information on spoken-word recognition was investigated in a previous study, in which we tracked Dutch listeners' looks to arrays of four printed words as they listened to spoken sentences. Each target was displayed along with a competitor that did not differ segmentally in its first two syllables but differed in stress placement (e.g., 'CENtimeter' and 'sentiMENT'). The listeners' eye-movements showed that stress information is used to recognize the target before distinct segmental information is available. Here, we examine the role of durational information in this effect. Two experiments showed that initial-syllable duration, as a cue to lexical stress, is not interpreted dependent on the speaking rate of the preceding carrier sentence. This still held when other stress cues like pitch and amplitude were removed. Rather, the speaking rate of the preceding carrier affected the speed of word recognition globally, even though the rate of the target itself was not altered. Stress information modulated lexical competition, but did so independently of the rate of the preceding carrier, even if duration was the only stress cue present

    What is moving in silica at 1 K? A computer study of the low-temperature anomalies

    Full text link
    Though the existence of two-level systems (TLS) is widely accepted to explain low temperature anomalies in many physical observables, knowledge about their properties is very rare. For silica which is one of the prototype glass-forming systems we elucidate the properties of the TLS via computer simulations by applying a systematic search algorithm. We get specific information in the configuration space, i.e. about relevant energy scales, the absolute number of TLS and electric dipole moments. Furthermore important insight about the real-space realization of the TLS can be obtained. Comparison with experimental observations is included

    Local Properties of the Potential Energy Landscape of a Model Glass: Understanding the Low Temperature Anomalies

    Full text link
    Though the existence of two-level systems (TLS) is widely accepted to explain low temperature anomalies in the sound absorption, heat capacity, thermal conductivity and other quantities, an exact description of their microscopic nature is still lacking. We performed computer simulations for a binary Lennard-Jones system, using a newly developed algorithm to locate double-well potentials (DWP) and thus two-level systems on a systematic basis. We show that the intrinsic limitations of computer simulations like finite time and finite size problems do not hamper this analysis. We discuss how the DWP are embedded in the total potential energy landscape. It turns out that most DWP are connected to the dynamics of the smaller particles and that these DWP are rather localized. However, DWP related to the larger particles are more collective

    Nonlinear interference in a mean-field quantum model

    Full text link
    Using similar nonlinear stationary mean-field models for Bose-Einstein Condensation of cold atoms and interacting electrons in a Quantum Dot, we propose to describe the original many-particle ground state as a one-particle statistical mixed state of the nonlinear eigenstates whose weights are provided by the eigenstate non-orthogonality. We search for physical grounds in the interpretation of our two main results, namely, quantum-classical nonlinear transition and interference between nonlinear eigenstates.Comment: RevTeX (pdfLaTeX), 7 pages with 5 png-figures include
    • …
    corecore