1,245 research outputs found

    Inelastic neutrino scattering off hot nuclei in supernova environments

    Full text link
    We study inelastic neutrino scattering off hot nuclei for temperatures relevant under supernova conditions. The method we use is based on the quasiparticle random phase approximation extended to finite temperatures within the thermo field dynamics (TQRPA). The method allows a transparent treatment of upward and downward transitions in hot nuclei, avoiding the application of Brink's hypothesis. For the sample nuclei 56^{56}Fe and 82^{82}Ge we perform a detailed analysis of thermal effects on the strength distributions of allowed Gamow-Teller (GT) transitions which dominate the scattering process at low neutrino energies. For 56^{56}Fe and 82^{82}Ge the finite temperature cross-sections are calculated by taking into account the contribution of allowed and forbidden transitions. The observed enhancement of the cross-section at low neutrino energies is explained by considering thermal effects on the GT strength. For 56^{56}Fe we compare the calculated cross-sections to those obtained earlier from a hybrid approach that combines large-scale shell-model and RPA calculations.Comment: 12 pages, 9 figure

    Excitation of the electric pygmy dipole resonance by inelastic electron scattering

    Full text link
    To complete earlier studies of the properties of the electric pygmy dipole resonance (PDR) obtained in various nuclear reactions, the excitation of the 1−^- states in 140^{140}Ce by (e,e′)(e,e') scattering for momentum transfers q=0.1−1.2q=0.1-1.2~fm−1^{-1} is calculated within the plane-wave and distorted-wave Born approximations. The excited states of the nucleus are described within the Quasiparticle Random Phase Approximation (QRPA), but also within the Quasiparticle-Phonon Model (QPM) by accounting for the coupling to complex configurations. It is demonstrated that the excitation mechanism of the PDR states in (e,e′)(e,e') reactions is predominantly of transversal nature for scattering angles θe≈90o−180o\theta_e \approx 90^o-180^o. Being thus mediated by the convection and spin nuclear currents, the (e,e′)(e,e') like the (γ,γ′)(\gamma,\gamma') reaction, may provide additional information to the one obtained from Coulomb- and hadronic excitations of the PDR in (p,p′)(p,p'), (α,α′)(\alpha,\alpha'), and heavy-ion scattering reactions. The calculations predict that the (e,e′)(e,e') cross sections for the strongest individual PDR states are in general about three orders of magnitude smaller as compared to the one of the lowest 21+2^+_1 state for the studied kinematics, but that they may become dominant at extreme backward angles.Comment: Prepared for the special issue of EPJA on the topic "Giant, Pygmy, Pairing Resonances and related topics" dedicated to the memory of Pier Francesco Bortigno

    Gamow-Teller strength distributions at finite temperatures and electron capture in stellar environments

    Full text link
    We propose a new method to calculate stellar weak-interaction rates. It is based on the Thermo-Field-Dynamics formalism and allows the calculation of the weak-interaction response of nuclei at finite temperatures. The thermal evolution of the GT+_+ distributions is presented for the sample nuclei 54,56^{54, 56}Fe and ~76,78,80^{76,78,80}Ge. For Ge we also calculate the strength distribution of first-forbidden transitions. We show that thermal effects shift the GT+_+ centroid to lower excitation energies and make possible negative- and low-energy transitions. In our model we demonstrate that the unblocking effect for GT+_+ transitions in neutron-rich nuclei is sensitive to increasing temperature. The results are used to calculate electron capture rates and are compared to those obtained from the shell model.Comment: 16 pages, 9 figure

    Quantum ratchet transport with minimal dispersion rate

    Get PDF
    We analyze the performance of quantum ratchets by considering the dynamics of an initially localized wave packet loaded into a flashing periodic potential. The directed center-of-mass motion can be initiated by the uniform modulation of the potential height, provided that the modulation protocol breaks all relevant time- and spatial reflection symmetries. A poor performance of quantum ratchet transport is characterized by a slow net motion and a fast diffusive spreading of the wave packet, while the desirable optimal performance is the contrary. By invoking a quantum analog of the classical P\'eclet number, namely the quotient of the group velocity and the dispersion of the propagating wave packet, we calibrate the transport properties of flashing quantum ratchets and discuss the mechanisms that yield low-dispersive directed transport.Comment: 6 pages; 3 figures; 1 tabl

    Search for weak M1 transitions in 48^{48}Ca with inelastic proton scattering

    Full text link
    The spinflip M1 resonance in the doubly magic nucleus 48^{48}Ca, dominated by a single transition, serves as a reference case for the quenching of spin-isospin modes in nuclei. The aim of the present work is a search for weak M1 transitions in 48^{48}Ca with a high-resolution (p,p') experiment at 295 MeV and forward angles including 0 degree and a comparison to results from a similar study using backward-angle electron scattering at low momentum transfers in order to estimate their contribution to the total B(M1) strength. M1 cross sections of individual peaks in the spectra are deduced with a multipole decomposition analysis. The corresponding reduced B(M1) transition strengths are extracted following the approach outlined in J. Birkhan et al., Phys. Rev. C 93, 041302(R) (2016). In total, 29 peaks containing a M1 contribution are found in the excitation energy region 7 - 13 MeV. The resulting B(M1) strength distribution compares well to the electron scattering results considering different factors limiting the sensitivity in both experiments and the enhanced importance of mechanisms breaking the proportionality of nuclear cross sections and electromagnetic matrix elements for weak transitions as studied here. The total strength of 1.19(6) μN2\mu_N^2 deduced assuming a non-quenched isoscalar part of the (p,p') cross sections agrees with the (e,e') result of 1.21(13) μN2\mu_N^2. A binwise analysis above 10 MeV provides an upper limit of 1.62(23) μN2\mu_N^2. The present results confirm that weak transitions contribute about 25% to the total B(M1) strength in 48^{48}Ca and the quenching factors of GT and spin-M1 strength are comparable in fp-shell nuclei. Thus, the role of of meson exchange currents seems to be neglible, in contrast to sd-shell nuclei.Comment: 11 pages, 9 figures, revised analysis with oxygen contamination remove

    Investigation of LiFeAs by means of "Break-junction" Technique

    Full text link
    In our tunneling investigation using Andreev superconductor - normal metal - superconductor contacts on LiFeAs single crystals we observed two reproducible independent subharmonic gap structures at dynamic conductance characteristics. From these results, we can derive the energy of the large superconducting gap ΔL=(2.5÷3.4)\Delta_L=(2.5 \div 3.4) meV and the small gap ΔL=(0.9÷1)\Delta_L=(0.9 \div 1) meV at T=4.2T = 4.2 K for the TClocal≈(10.5÷14)T_C^{local} \approx (10.5 \div 14) K (the contact area critical temperature which deviation causes the variation of ΔL\Delta_L). The BCS-ratio is found to be 2ΔL/kBTC=(4.6÷5.6)2\Delta_L/k_BT_C = (4.6 \div 5.6), whereas 2ΔS/kBTC≪3.522\Delta_S/k_BT_C \ll 3.52 results from induced superconductivity in the bands with the small gap.Comment: 7 pages, 5 figures. Published in Pis'ma v ZhETF 95, 604-610 (2012

    Effect of inter-wall surface roughness correlations on optical spectra of quantum well excitons

    Full text link
    We show that the correlation between morphological fluctuations of two interfaces confining a quantum well strongly suppresses a contribution of interface disorder to inhomogeneous line width of excitons. We also demonstrate that only taking into account these correlations one can explain all the variety of experimental data on the dependence of the line width upon thickness of the quantum well.Comment: 13 pages, 8 figures, Revtex4, submitted to PR

    Second Josephson excitations beyond mean field as a toy model for thermal pressure: exact quantum dynamics and the quantum phase model

    Full text link
    A simple four-mode Bose-Hubbard model with intrinsic time scale separation can be considered as a paradigm for mesoscopic quantum systems in thermal contact. In our previous work we showed that in addition to coherent particle exchange, a novel slow collective excitation can be identified by a series of Holstein-Primakoff transformations. This resonant energy exchange mode is not predicted by linear Bogoliubov theory, and its frequency is sensitive to interactions among Bogoliubov quasi-particles; it may be referred to as a second Josephson oscillation, in analogy to the second sound mode of liquid Helium II. In this paper we will explore this system beyond the Gross-Pitaevskii mean field regime. We directly compare the classical mean field dynamics to the exact full quantum many-particle dynamics and show good agreement over a large range of the system parameters. The second Josephson frequency becomes imaginary for stronger interactions, however, indicating dynamical instability of the symmetric state. By means of a generalized quantum phase model for the full four-mode system, we then show that, in this regime, high-energy Bogoliubov quasiparticles tend to accumulate in one pair of sites, while the actual particles preferentially occupy the opposite pair. We interpret this as a simple model for thermal pressure

    Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Get PDF
    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission
    • …
    corecore