18,778 research outputs found

    The Optimum Distance at which to Determine the Size of a Giant Air Shower

    Full text link
    To determine the size of an extensive air shower it is not necessary to have knowledge of the function that describes the fall-off of signal size from the shower core (the lateral distribution function). In this paper an analysis with a simple Monte Carlo model is used to show that an optimum ground parameter can be identified for each individual shower. At this optimal core distance, roptr_\mathrm{opt}, the fluctuations in the expected signal, S(ropt)S(r_\mathrm{opt}), due to a lack of knowledge of the lateral distribution function are minimised. Furthermore it is shown that the optimum ground parameter is determined primarily by the array geometry, with little dependence on the energy or zenith angle of the shower or choice of lateral distribution function. For an array such as the Pierre Auger Southern Observatory, with detectors separated by 1500 m in a triangular configuration, the optimum distance at which to measure this characteristic signal is close to 1000 m

    Evolving macro-actions for planning

    Get PDF
    Domain re-engineering through macro-actions (i.e. macros) provides one potential avenue for research into learning for planning. However, most existing work learns macros that are reusable plan fragments and so observable from planner behaviours online or plan characteristics offline. Also, there are learning methods that learn macros from domain analysis. Nevertheless, most of these methods explore restricted macro spaces and exploit specific features of planners or domains. But, the learning examples, especially that are used to acquire previous experiences, might not cover many aspects of the system, or might not always reflect that better choices have been made during the search. Moreover, any specific properties are not likely to be common with many planners or domains. This paper presents an offline evolutionary method that learns macros for arbitrary planners and domains. Our method explores a wider macro space and learns macros that are somehow not observable from the examples. Our method also represents a generalised macro learning framework as it does not discover or utilise any specific structural properties of planners or domains

    Magnetic cylindrical colloids at liquid interfaces exhibit non-volatile switching of their orientation in an external field

    Get PDF
    We study the orientation of magnetic cylindrical particles adsorbed at a liquid interface in an external field using analytical theory and high resolution finite element simulations. Cylindrical particles are interesting since they possess multiple locally stable orientations at the liquid interface so that the orientational transitions induced by an external field will not disappear when the external field is removed, i.e., the switching effect is \emph{non-volatile}. We show that, in the absence of an external field, as we reduce the aspect ratio Ī±\alpha of the cylinders below a critical value (Ī±cā‰ˆ2\alpha_c \approx 2) the particles undergo spontaneous symmetry breaking from a stable side-on state to one of two equivalent stable tilted states, similar to the spontaneous magnetisation of a ferromagnet going through the Curie point. By tuning both the aspect ratio and contact angle of the cylinders, we show that it is possible to engineer particles that have one, two, three or four locally stable orientations. We also find that the magnetic responses of cylinders with one or two stable states are similar to that of paramagnets and ferromagnets respectively, while the magnetic response of systems with three or four stable states are even more complex and have no analogs in simple magnetic systems. Magnetic cylinders at liquid interfaces therefore provide a facile method for creating switchable functional monolayers where we can use an external field to induce multiple non-volatile changes in particle orientation and self-assembled structure

    From Microscales to Macroscales in 3D: Selfconsistent Equation of State for Supernova and Neutron Star Models

    Full text link
    First results from a fully self-consistent, temperature-dependent equation of state that spans the whole density range of neutron stars and supernova cores are presented. The equation of state (EoS) is calculated using a mean-field Hartree-Fock method in three dimensions (3D). The nuclear interaction is represented by the phenomenological Skyrme model in this work, but the EoS can be obtained in our framework for any suitable form of the nucleon-nucleon effective interaction. The scheme we employ naturally allows effects such as (i) neutron drip, which results in an external neutron gas, (ii) the variety of exotic nuclear shapes expected for extremely neutron heavy nuclei, and (iii) the subsequent dissolution of these nuclei into nuclear matter. In this way, the equation of state is calculated across phase transitions without recourse to interpolation techniques between density regimes described by different physical models. EoS tables are calculated in the wide range of densities, temperature and proton/neutron ratios on the ORNL NCCS XT3, using up to 2000 processors simultaneously.Comment: 6 pages, 11 figures. Published in conference proceedings Journal of Physics: Conference Series 46 (2006) 408. Extended version to be submitted to Phys. Rev.

    Ice/frost detection using millimeter wave radiometry

    Get PDF
    A series of ice detection tests was performed on the shuttle external tank (ET) and on ET target samples using a 35/95 GHz instrumentation radiometer. Ice was formed using liquid nitrogen and water spray inside a test enclosure containing ET spray on foam insulation samples. During cryogenic fueling operations prior to the shuttle orbiter engine firing tests, ice was formed with freon and water over a one meter square section of the ET LOX tank. Data analysis was performed on the ice signatures, collected by the radiometer, using Georgia Tech computing facilities. Data analysis technique developed include: ice signature images of scanned ET target; pixel temperature contour plots; time correlation of target data with ice present versus no ice formation; and ice signature radiometric temperature statistical data, i.e., mean, variance, and standard deviation

    Completed cohomology of Shimura curves and a p-adic Jacquet-Langlands correspondence

    Full text link
    We study indefinite quaternion algebras over totally real fields F, and give an example of a cohomological construction of p-adic Jacquet-Langlands functoriality using completed cohomology. We also study the (tame) levels of p-adic automorphic forms on these quaternion algebras and give an analogue of Mazur's `level lowering' principle.Comment: Updated version. Contains some minor corrections compared to the published versio

    Data on Apollo 11 and 12 samples. Speculations on petrologic differentiation Final report

    Get PDF
    Petrologic and mineralogic studies of Apollo 11 and 12 lunar rock

    Levinson's Theorem for Non-local Interactions in Two Dimensions

    Full text link
    In the light of the Sturm-Liouville theorem, the Levinson theorem for the Schr\"{o}dinger equation with both local and non-local cylindrically symmetric potentials is studied. It is proved that the two-dimensional Levinson theorem holds for the case with both local and non-local cylindrically symmetric cutoff potentials, which is not necessarily separable. In addition, the problems related to the positive-energy bound states and the physically redundant state are also discussed in this paper.Comment: Latex 11 pages, no figure, submitted to J. Phys. A Email: [email protected], [email protected]

    Effect of surface roughness on the microwave emission from soils

    Get PDF
    The effect of surface roughness on the brightness temperature of a moist terrain was studied through the modification of Fresnel reflection coefficient and using the radiative transfer equation. The modification involves introduction of a single parameter to characterize the roughness. It is shown that this parameter depends on both the surface height variance and the horizontal scale of the roughness. Model calculations are in good quantitative agreement with the observed dependence of the brightness temperature on the moisture content in the surface layer. Data from truck mounted and airborne radiometers are presented for comparison. The results indicate that the roughness effects are greatest for wet soils where the difference between smooth and rough surfaces can be as great as 50K

    The equation of state of neutron star matter and the symmetry energy

    Full text link
    We present an overview of microscopical calculations of the Equation of State (EOS) of neutron matter performed using Quantum Monte Carlo techniques. We focus to the role of the model of the three-neutron force in the high-density part of the EOS up to a few times the saturation density. We also discuss the interplay between the symmetry energy and the neutron star mass-radius relation. The combination of theoretical models of the EOS with recent neutron stars observations permits us to constrain the value of the symmetry energy and its slope. We show that astrophysical observations are starting to provide important insights into the properties of neutron star matter.Comment: 7 pages, 3 figure, talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS
    • ā€¦
    corecore