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Abstract

Domain re-engineering through macro-actions (i.e. macros)
provides one potential avenue for research into learning for
planning. However, most existing work learns macros that
are reusable plan fragments and so observable from planner
behaviours online or plan characteristics offline. Also, there
are learning methods that learn macros from domain analy-
sis. Nevertheless, most of these methods explore restricted
macro spaces and exploit specific features of planners or do-
mains. But, the learning examples, especially that are used to
acquire previous experiences, might not cover many aspects
of the system, or might not always reflect that better choices
have been made during the search. Moreover, any specific
properties are not likely to be common with many planners or
domains. This paper presents an offline evolutionary method
that learns macros for arbitrary planners and domains. Our
method explores a wider macro space and learns macros that
are somehow not observable from the examples. Our method
also represents a generalised macro learning framework as it
does not discover or utilise any specific structural properties
of planners or domains.

Introduction
Planning has achieved significant progress in recent years
from planning competitions. The focus of planning research,
however, lies mostly on developing planning technologies
while the impact of problem formulation on its solution pro-
cess remains overlooked. Re-engineering a domain by util-
ising knowledge acquired for a planner paves the way for
further research in this direction. Macro-actions, when rep-
resented as additional actions, are one relatively convenient
way by which to convey such knowledge and achieve do-
main enhancements. Within current limits of the Planning
Domain Definition Language (PDDL), any knowledge can
be conveyed only by additional actions and practically only
in STRIPS and FLUENTS subsets of the PDDL.

A macro-action, or macro, is a group of actions selected
for application at one time like a single action. So, one ap-
plication of a macro leads to planning of several steps at a
time. Macros could represent plan fragments that are found
with enormous search effort or are frequently used. Macros
could capture local search to find better successor nodes es-
pecially when the immediate search neighbourhood is not
good. Macros could affect neighbourhood evaluation and
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thus take the search in a different direction. Consequently,
a goal could be reached quickly and problems that are un-
solvable1 could become solvable. When macros are added
into a domain as additional actions, no planner modification
is needed; also, the reachability of a problem is not affected.
But they cause more preprocessing time and incur an ex-
tra overhead for the planners adding more branches in the
search tree. However, the latter problem is minimised due to
the use of a technique called helpful action pruning (Hoff-
mann & Nebel 2001) by many recent planners.

Motivations. Most existing work learns macros from do-
main analysis or reusable plan fragments (see the section de-
scribing related work). Only macros that encapsulate static
domain properties can be learnt from domain analysis. The
reusable plan fragments can be captured from online plan-
ner behaviours or offline plan characteristics. Although our
other work in (Newton et al. 2007) showed various macros
that improve performance could be learnt successfully from
plans using no specific structural knowledge, most exist-
ing work somehow exploits particular domain or planner
properties. However, during search, the planners often get
overwhelmed by the numerous grounded actions available
at each node. In these situations, they adopt pruning strate-
gies that help them select next steps very quickly. While
making such cursory moves, the chance of not considering
all potentially good options remains high. Such hasty deci-
sions thus do not always reflect the better choices available.
Furthermore, the example problems, used for macro acqui-
sition, might not cover many aspects of the system as what
problems make a good collection is not easily addressed.
Nevertheless, most of the existing methods explore macro
spaces that are, in effect, restricted. Therefore, the main mo-
tivation for this work is to explore the macros that are nor-
mally not considered and so not observable. An evolutionary
algorithm with its rich operator collection and search direc-
tion could help much in this regard. Another motivation of
this work is to maintain the generality about planners and
domains that our aforementioned work obtained. This is be-
cause any specific properties are not likely to be common
with a wider range of planners or domains.

1By solvability we mean, using the original domain, whether
the planner can solve the problem within given resource (e.g. time,
memory, etc.) limits. Whether the goal of a problem can be attained
in a given context is discussed under the term reachability.



Contribution. This paper presents an offline evolutionary
macro learning method that works with arbitrary planners
and domains. Given a planner, a domain, and a number of
example problems, our method learns and suggests individ-
ual macros that are to be included permanently in the domain
as additional actions. The main highlight however is this
method can learn macros that are not observable from exam-
ples; the reasons could be they are not normally considered
and/or the examples do not cover the aspects. This work
successfully shows that such macros are also useful and in
many cases, are suggested, based on our evaluation, over the
observable macros. Another highlight is this method, un-
like existing work, does not exploit any specific structural
properties of planners or domains. The desirable aspects of
our method are due to the use of an evolutionary approach
as our learning technique and plans as the source of con-
stituent actions. On one hand, plans invariably reflect suc-
cessful choices of actions by the planner and so bear inher-
ently the characteristics of the planner or the domain espe-
cially that led to the solution. Evolutionary algorithms, on
the other hand, are automatic learning methods that not only
can capture observable features of a system using no explic-
itly specific knowledge about it, but also can evolve other
inherent features. We have achieved convincing results with
several planners and domains.

Overview. For the sake of convenience, macros are rep-
resented both as sequences of parameterised (and so gen-
eralised) constituent actions and as resultant actions built up
by regression of the actions in the sequences. While building
macros from scratch, or lifting from plans, or evolving from
other macros, plans of smaller problems2, called seeding
problems, are used as the source of constituent actions. A
rich collection of genetic operators is used to explore a wider
macro space which includes observable macros as well. The
evaluation of macros is done against other larger but solv-
able problems, called ranking problems. These problems
are, however, not too large because they are attempted to be
solved for every macro. Also, they are not too small because
time gains cannot be measured properly for smaller prob-
lems. The fitness function is based on a weighted average of
the time gains while solving the ranking problems with the
macro augmented domain and the original domain. After
the learning is accomplished, yet another set of more diffi-
cult problems (which might include unsolvable instances),
called testing problems, are used to demonstrate the perfor-
mance of the selected individual macros.

The rest of the paper is organised as follows: the next
three sections discuss evolutionary algorithms, related work,
and an evolutionary approach of learning macros, the last
two sections discuss our experiments and conclusion.

Evolutionary Algorithms

An evolutionary algorithm keeps a population of good indi-
viduals, generates a new population from the current one us-
ing a given set of genetic operators. It then replaces inferior
current individuals by superior new individuals (if any) to
get a better current population, which is again used to repeat

2By problem size or difficulty level we mean, the time required
by the given planner to solve the problem with the original domain.

the process until the termination condition is met. In a par-
ticular problem context, an individual is taken for a solution
(macro in our case); which means evolutionary algorithms
are an optimisation based multi-point search on the solution
space. Moreover, newly generated individuals are other pos-
sible solutions in the neighbourhood of the currently kept
solutions and a richer collection of genetic operators explore
more possible solutions. The requirements of an evolution-
ary algorithm are a suitable encoding of the individuals, a
method to seed the initial population, definitions of the ge-
netic operators to generate new individuals from the current
population, and a method to evaluate individuals across the
populations. Note that, by satisfying such requirements, the
specific knowledge, we give, is actually generic in planning
and by no way specific to a planner or a domain.

Evolutionary algorithms have produced promising results
in learning control knowledge for domains and some suc-
cess in generating plans. EvoCK (Aler, Borrajo, & Isasi
2001) evolved heuristics generated by HAMLET (Borrajo
& Veloso 1997) for PRODIGY4.0 (Veloso et al. 1995) and
outperformed both of them. L2Plan (Levine & Humphreys
2003) evolved control knowledge or policies that outper-
formed hand-coded policies. Spector, using evolutionary
algorithms, managed to achieve plans for small problems
having a range of initial and goal states (Spector 1994).
SINERGY (Muslea 1998) could only solve problems with
specific initial and goal states. GenPlan (Westerberg &
Levine 2000) showed that evolutionary algorithms can gen-
erate plans; but it is somewhat inferior than the state-of-the-
art planners. Recently, we have used an evolutionary ap-
proach successfully to learn macros from plans for arbitrary
plans and domains (Newton et al. 2007). Evolutionary algo-
rithms have also been used to optimise plans in (Westerberg
& Levine 2001).

Related Work
Macros are not very new in planning research. STRIPS
(Fikes, Hart, & Nilsson 1972) generates macros from unique
subsequences of wholly parameterised plans. REFLECT’s
(Dawson & Siklóssy 1977) macros are based on causal links
between actions in the domain. MORRIS (Minton 1985)
learns macros from plan fragments that are frequently used
or achieve interacting goals. Macro Problem Solver (MPS)
(Korf 1985) learns a complete set of macros that totally elim-
inates the search but only for a particular goal in fixed size
problems of domains that exhibit operator decomposabil-
ity. MACLEARN (Iba 1989) learns macros from action se-
quences that lead the search to reach a peak from another
peak in its heuristic profile. It then uses an automated static
filter based on domain knowledge and a manual dynamic
filter based on usages of macros in plans. MARVIN (Coles
& Smith 2007) learns macros from the plan of a reduced
version of the given problem after eliminating symmetries
and also from the action sequences that help the search es-
cape plateaus in its heuristic profile. Macro-FF (Botea et
al. 2005) learns macros by using component level abstrac-
tion based on static facts of a domain and also by partial-
order lifting from plans based on an analysis of causal links.
It then evaluates the macros by solving other problems and
counting the number of states explored. A very preliminary



stage of this work is reported in (Newton, Levine, & Fox
2005). Also, a similar approach (Newton et al. 2007) is
presented later that learns macros occurring in plans only
for arbitrary planners and domains. However, this work is
different from any of the above in exploring the space of
non-observable macros and showing that such macros could
be suggested over observable ones.

An Evolutionary Macro Learning Method
Our learning method is described in Figure 1 where individ-
uals are taken as macros. Its implementation issues include
representation, generation, and evaluation of macros along
with validation and pruning techniques to reduce any effort
wastage. Because of space constraints, we describe them
very briefly. For further details, we refer the reader to our
other work reported in (Newton et al. 2007). These two
implementations only differ in genetic operators used and
pruning strategies adopted. This work has a rich collection
of operators and uses pruning strategies as few as possible to
facilitate exploration of a wider macro space. In contrast, the
other work has a restricted operator set and more stringent
pruning rules to explore macros occurring in plans only.

1. Initialise the population and evaluate each individual to assign a numerical rating.

2. Repeat the following steps for a given number of epochs.

(a) Repeat the following steps for a number equal to the population size.

i. Generate an individual using randomly selected operators and operands, and

exit if a new individual is not found in a reasonable number of attempts.

ii. Evaluate the generated individual and assign a numerical rating.

(b) Replace inferior current individuals by superior new individuals and exit if

replacement is not satisfactory.

(c) Exit if generation of a new individual failed.

3. Suggest the best individuals as the output of the algorithm.

Figure 1: An evolutionary learning method

Macro Representation. Macros are represented both as se-
quences of parameterised (and so generalised) constituent
actions and as resultant actions composed up by regression3

of actions in the sequences. Genetic operators are applied on
the operand macro’s sequence and from the output sequence,
the resultant macro’s action is built. Had PDDL supported
macros, the action composition would not be required and
planners could easily execute a macro sequence.

Macro Generation. Macros are generated by using the ge-
netic operators described in Figure 2. The operand actions
come from plans of the seeding problems and the macros
from the current population. All operands are, however, se-
lected randomly. To seed the initial macro population, only
lift and construct operators are used. Note, a subset of these
operators, that includes lift, extend, delete only at ends, and
split, explores macros observable from plans and thus occa-
sionally drives towards convergence.

Macro Evaluation. For each macro, an augmented domain
is produced adding it as an additional action to the original
domain. For all the ranking problems, the planner is then run

3Action composition by regression is a binary, associative, and
non-commutative operation on actions where the latter action’s pre-
condition and effect are subject to the former action’s effect, and
both actions’ parameters are unified. Regression is practically fea-
sible in STRIPS and FLUENTS only.

⋆ Lift: an action sequence is randomly lifted as it appears in a plan.

⋆ Construct: an action sequence is built from scratch by picking
individual actions up randomly.

• Extend: an action appearing immediate next/prior to a macro is
appended at the respective end.

• Insert: an action is inserted at a random position (including
ends) of a macro.

• Delete: an action is deleted from a random position (including
ends) of a macro.

• Alter: an action replaces one random action of a macro.

• Split: a macro is split at one random position and either one
gives the output macro.

◦ Merge: two macro sequences are concatenated together to pro-
duce one output macro.

◦ Crossover: a random prefix of one macro is concatenated with a
random suffix of another macro.

Figure 2: Description of the genetic operators

both with the original domain and the augmented domain
under similar resource limits. The utility function, shown in
Figure 3 is then used to give a numerical rating to the aug-
mented domain (and so the macro) against the original do-
main. For a good macro, in qualitative terms, most problems
(reflect by C) should be solved taking less time (reflected
by S) in most cases (reflected by P ) with its augmented do-
main. A bad macro, in contrast, would cause an overhead
that leads to longer solution times or even failures in solv-
ing problems within given resource limits. Good macros,
however, may not have high usage because less frequent but
tricky macros could save enormous search time. The utility
function is mainly based on S which is a weighted average
of time gains giving larger problems more weight. The other
factors are to counterbalance any misleadingly high value.

Macro Pruning. A number of strategies are adopted in
Step 2(a)i of the learning method in Figure 1; these prune
generated macros before evaluation. Action sequences that
have subsequences producing null effects are not mini-
mal. Action sequences, differing only by parameterisation
or equivalent in partial order, are considered as same se-
quence. Maximum sequence length and maximum param-
eter count are fixed by given bounds. Early detection of in-
ferior macros during evaluation in Step 2(a)ii in Figure 1
saves learning time needed otherwise to solve the remaining
problems. Failure to solve a problem using the augmented
domain within certain limits whereas it is solvable using the
original domain implies the macro is causing much overhead
and resource (time, memory, etc.) scarcity to the planner.

Other stringent strategies like causal links or common pa-
rameters between constituent actions are not adopted al-
though they ensure cohesiveness of constituent actions and
also oversee irrelevant actions are not part of a macro. This
is because our interest is to learn any macros that help
speedup the search. A macro might have some helpful auto
correlations between its constituent actions. Even a macro
not usable in any plans might be helpful in the search.

Macro Validation. Pruning strategies help detect invalid
macros during their generation and also during their eval-
uation. Furthermore, plans produced with the augmented
domains are validated as needed to detect macros that some-
how cause invalid plans to be produced by the planner.
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Where,

n: Number of ranking problems to be solved.

m: Number of times a ranking problem is to be solved. For a deterministic planner,

m = 1. A stochastic planner produces different plans in different runs taking

different times. Therefore, larger m, preferably ≥ 5, gives a time distribution

t(sample-count ν, mean µ, dispersion δ = σ/
√

ν) for such planners.

tk(νk, µk, δk): Time distribution for problem-k while solving with the original

domain. Note, each problem is solved m times with the original domain i.e.,

νk = m. Moreover, µk > 0. When m = 1, νk = 1 and so δk = 0. If

δk = 0, any terms involving δk are omitted.

t′
k
(ν′

k
, µ′

k
, δ′

k
): Time distribution for problem-k while solving with the augmented

domain. Note, 0 ≤ ν′

k
≤ m. When the problem is not solved (i.e., ν′

k
= 0),

µ′

k
= ∞. When m = 1, ν′

k
= 0 or 1 and so δ′

k
= 0.

t(ν, µ, δ) = Σn

k=1tk: Total time distribution for all the ranking problems while

solving with the original domain. This is a sum of random variables. Therefore,

ν = Σn

k=1νk = mn, µ = Σn

k=1µk , and δ2 = Σn

k=1δ2
k

.

ck = ν′

k
/νk: Probability that problem-k is solved using the augmented domain.

sk = µk/(µk + µ′

k
): The normalised gain/loss in mean while solving problem-k

with the augmented domain. Note, sk = 1, 1
2

, and 0 for µ′

k
= 0, µk , and ∞.

s′

k
= δk/(δk + δ′

k
): The normalised gain/loss in dispersion while solving problem-

k with the augmented domain. If m = 1, s′

k
is defined to be 0 and omitted as

δk = δ′

k
= 0. Note, s′

k
= 1, 1

2
, and 0 for δ′

k
= 0, δk , and ∞.

wk = µk/µ: Weight of gain/loss in mean giving more emphasis on larger problems

w′

k
= 1/n: Weight of gain/loss in dispersion giving equal emphasis on all problems

w = µ/(µ + δ): The overall weight of gain/loss in mean.

w′ = δ/(µ + δ): The overall weight of gain/loss in dispersion.

pk = 1 for gain, 0 for loss, 1
2

otherwise. The Students t-test at 5% significance

level on tk and t′
k

determines a gain or a loss. Alternatively, sign(µk − µ′

k
) is

used when m = 1 and/or t-test cannot be used because δs are zero.

Figure 3: A utility function for macro evaluation

Experiments
To demonstrate success for arbitrary planners, we choose
several planners – FF, VHPOP, SGPLAN, and Fast Down-
ward (FD). The planners have different basic characteris-
tics and are current state-of-the-art ones in their respective
tracks. The domains chosen are some new domains writ-
ten based on bench mark domains used in planning research
(see Figure 4) although we have some results directly on
existing domains like Blocks, Satellite, and Ferry. This is
because planners could be over-fitted with the benchmark
domains and we wanted to investigate how they perform on
newer domains with or without macros. Another reason is
most candidate bench mark domains are smaller and sim-
pler (e.g. transportation domains) or too large (e.g. Settlers).
Nevertheless, the new domains pose sufficient challenge to
the state-of-the-art planners as seen from Figure 6 and 7. As
noted before, the problems used to demonstrate performance
of the suggested macros are the testing problems. For a sug-
gested macro, the testing problems are solved using both the
original domain and the augmented domain.

Results. Figure 5 describes the typical setup of our exper-
iments. The parameter values in most cases are chosen in-
tuitively. Because of space constraints, Figure 6 shows the
plan times of some of the macros graphically for quick un-
derstanding. However, Figure 7 summarises performances
of the suggested macros for all planner-domain pairs. Note,

◦ Blocks domain has an arm that picks and drops blocks to build stacks on a table.

◦ Satellite domain deals with a number of satellites that can take images of targets in

various modes and transmit data to the base. PSatellite and NSatellite are its propo-

sitional and numerical versions. The numerical version has additional constraints

on buffer capacity.

◦ Railway domain (10 actions) is a reduced version of the Settlers domain. Only the

railway construction part has been taken with relevant structures added. PRailway

and NRailway represents its propositional and numerical models respectively.

◦ Reliefwork (12 actions) is a transportation domain based on disaster management

scenarios in flood affected areas. Victims are to be attended by a patrol boat.

Depending on a victim’s need, a relief pack is delivered, or a pickup boat is called

to take him/her to a shelter, or an ambulance boat is called to take the victim to

a hospital. PReliefwork and NReliefwork are respectively the propositional and

numerical versions.

◦ NCokeCake domain (10 actions) combines two problems – pouring and filling jugs

of certain volumes to measure any volume and putting fixed weights on and off on

a scale both additively and subtractively to measure any weight.

Figure 4: Domains used in this work

all the macros presented here (in first five charts) are non-
observable and are better (as our learning method suggests)
than the best observable macros. For the time being, we
put emphasis on the prospect of exploring non-observable
macros and do not show their performance comparison
against observable ones; however, the last chart in Figure 6
shows such results in PSatellite domain for planner VHPOP.

⋆ Number of random problems: Seeding 5, Ranking 20, Testing 50

⋆ Macro size limits: Maximum parameters 12, Maximum sequence length 16

⋆ Operator selection probability: around 10% for each operator

⋆ Sample count for a stochastic planner to represent the distribution: 5

⋆ Evaluation phase pruning: a macro is pruned out if more than 50% problems or

runs are unsatisfactory

⋆ Number of epochs: 200 Population size: 2 × number of actions

⋆ Satisfactory replacement level: at least 1 in every 50 consecutive epochs

⋆ Generation attempts: maximum 999999 for every new macro

⋆ Limits: memory 1 gigabyte, time (secs)- seeding 10, ranking 20, testing 1800

⋆ Computers’ configuration: Pentium 4, Linux, CPU 3ghz, RAM 2gb

Figure 5: Experimental setup

Analysis. For a comprehensive analysis of this work, the
qualitative achievements are presented as hypotheses with
proper justification made by the results.

Hypothesis 1 Our utility function is qualitatively consistent
across given problems, domains and planners.

Justification: As mentioned earlier, the exact utility values
assigned to the macros are relative to the ranking problems
and the planner used. Therefore, it is necessary to show
the qualitative consistency of our utility function. For this,
we computed utility values of the suggested macros against
the testing problems. For most macros in most domains,
these values are positively correlated with the values as-
signed against ranking problems during evaluation. Further-
more, many of the suggested macros (see Figure 7) achieve
significant improvement with the testing problems.

Hypothesis 2 Without exploiting any specific knowledge
about planners or domains, our method can effectively learn
macros that are not observable from plans.
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Figure 6: Time performance of some suggested macros

• S% problems are solved only with the augmented domain and s% only with the original domain.

• T% problems take less time with the augmented domain and t% with the original domain.

• L% problems have less plan length with the augmented domain and l% with the original domain.

• (P%, p%) is (mean, dispersion) of plan time (T ) performance (TOrig − TAug)/TOrig

• (Q%, q%) is (mean, dispersion) of plan length (L) quality (LOrig − LAug)/LOrig

domain-planner-macro +S -s +T -t P ± p +L -l Q ± q

NCokeCake-FF-1 +28 -0 +72 -0 82 ± 1 +62 -10 4 ± 0

NCokeCake-FF-2 +28 -0 +72 -0 82 ± 1 +60 -12 3 ± 0

NCokeCake-SGPlan-1 +36 -4 +28 -10 -1 ± 41 +12 -26 -6 ± 2

NCokeCake-SGPlan-2 +44 -4 +32 -6 55 ± 17 +0 -38 -26 ± 2

NRailway-FF-1 +24 -0 +36 -12 58 ± 7 +2 -34 -12 ± 2

NRailway-FF-2 +20 -2 +36 -10 51 ± 8 +0 -34 -14 ± 2

NRailway-SGPlan-1 +16-0 +60 -14 1 ± 34 +2 -62 -18 ± 2

NRailway-SGPlan-2 +16-0 +60 -16 1 ± 34 +2 -62 -16 ± 2

NReliefWork-FF-1 +30 -0 +70 -0 99 ± 0 +16 -44 -1 ± 0

NReliefWork-FF-2 +30 -0 +70 -0 99 ± 0 +42 -6 2 ± 0

NReliefWork-SGPlan-1 +10 -0 +80 -0 88±1 +0-20 0±0

NReliefWork-SGPlan-2 +10 -0 +80 -0 88±0 +0-20 0±0

PRailWay-FD-1 +50-0 +20-2 41 ± 18 +18 -2 13 ± 3

PRailWay-FD-2 +54-0 +20-2 52 ± 8 +16 -6 7 ± 3

PRailWay-FF-1 +14 -4 +22 -4 10 ± 23 +0 -18 -5 ± 1

PRailWay-FF-2 +12 -0 +26 -4 21 ± 8 +0 -12 -10 ± 3

PRailWay-SGPlan-1 +14 -0 +50 -12 34 ± 7 +24 -34 0 ± 0

PRailWay-SGPlan-2 +14 -0 +56 -6 41 ± 7 +2 -60 -4 ± 0

PReliefWork-FD-1 +0 -0 +80 -20 7 ± 3 +20 -36 0 ± 0

PReliefWork-FD-2 +0 -0 +88 -12 10 ± 2 +16 -42 0 ± 0

PReliefWork-FF-1 +0 -0 +100 -0 89 ± 0 +0 -100 -3 ± 0

PReliefWork-FF-2 +0 -0 +100 -0 89 ± 0 +2 -54 0 ± 0

PReliefWork-SGPlan-1 +20 -0 +54 -8 44 ± 5 +0-12 0 ± 0

PReliefWork-SGPlan-2 +36 -0 +62 -0 75 ± 2 +0-60 0 ± 0

PReliefWork-VHPOP-1 +16 -0 +24 -0 92 ± 2 +0 -2 0 ± 0

PReliefWork-VHPOP-2 +12 -0 +24 -0 91 ± 2 +0 -2 0 ± 0

VHPOP, FD does not support FLUENTS; VHPOP cannot solve any PRailway problem

Figure 7: Summarised experimental results

Justification: Our method uses a rich collection of ge-
netic operators to explore a wider macro space that includes
both observable and non-observable macros. Its implemen-
tation does not use any planner or domain specific knowl-
edge anywhere in macro representation, generation, valida-
tion, and evaluation. Figure 7 shows that, for most planner-
domain pairs, using our non-observable macros, not only
can problems be solved much faster but also many unsolv-
able problems can be solved. Figure 8 shows how observ-
able macros are transformed into non-observable macros;

the non-observable macro (the middle one in the figure) was
not observed from the examples used although it could be
found in plans of other problems.

Hypothesis 3 Non-observable macros, as suggested by our
method, could help improve planners’ performances on do-
mains significantly and in many cases they are suggested
over or better than observable ones.

Justification: This is the main result of this paper as it
shows non-observable macros are worth exploring. Results
present in Figure 7 shows such macros in most cases help
planners run faster on domains. As mentioned earlier all
these macros are suggested over observable macros; as an
example, the last chart in Figure 8 shows performance com-
parison of the evolved-best and the observed-best macros in
PSatellite for VHPOP.

Hypothesis 4 There exist catalytic macros that are not us-
able in plans but still help speedup search.

Justification: This is a very interesting result from our ex-
periments. Catalytic macros, according to our observation
so far, have unsatisfiable preconditions and incoherent ac-
tion sequences. Although they cannot be used in plans,
they somehow help speedup search. Our investigation shows
this is not necessarily due to improvements in the heuristic
values. Heuristic functions normally involve relaxed prob-
lem formulations, which are inconsistent with respect to the
given formulations. We remark catalytic macros, being in-
consistent themselves, are somehow helpful in the heuristic
evaluations. In consequence, successor node selection is af-
fected; the search is taken in a different direction; and the
goal is found quickly. Figure 8 shows the first action in the
catalytic macro makes it non-usable in any plans; however,
FF still runs faster (even compared to the other macros in the
figure) using this macro in Blocks. There exist examples for
other planners and domains as well.



(drop ?b5)
(unstack ?b5 ?b0) (unstack ?b5 ?b0) (unstack ?b5 ?b0)
(stack ?b5 ?b2) (stack ?b5 ?b2) (stack ?b5 ?b2)
(pick ?b0) (pick ?b0) (pick ?b0)

(stack ?b0 ?b5) (stack ?b0 ?b5)

Figure 8: Evolution of macros in Blocks for FF: observable
to non-observable to catalytic non-observable

Other observations and comments about our experiments
are as follows:

1. Our non-observable macros have mixed effect on plan
length (see +L/-l in Figure 7).

2. In essence, this work is to show that such an evolutionary
approach works successfully; its performance is, there-
fore, not measured in terms of its learning time. How-
ever, Figure 9 depicts learning effort required for planners
on domains in this work. To speed up the learning pro-
cess, the intuitively chosen parameters (e.g. population-
size, epoch-count, operator-probabilities, replacement-
level, etc.) are to be tuned.

3. Composition of actions is not, in essence, a hard require-
ment of this work; had PDDL supported macros, a macro
could be executed or constructed online easily.

T: training hours, N: #macros evaluated, R: ratio of #generated to #evaluated
T / N / R FF SGPLAN FD VHPOP

NCokeCake 77 / 1380 / 2 100 / 1460 / 3

NRailway 232 / 2560 / 2 209 / 3620 / 3

NReliefwork 66 / 3624 / 7 83 / 4272 / 10

PRailway 233 / 2840 / 3 140 / 4000 / 8 90 / 4000 / 6

PRailway 238 / 2208 / 6 121 / 3312 / 8 129 / 2160 / 3 142 / 1656 / 5

Figure 9: Learning effort: training time, macros evaluated,
and the ratio of macros generated to evaluated

Conclusion
This paper presents an offline evolutionary macro learning
method that works with arbitrary planners and domains.
Most existing work, exploiting specific features of planners
or domains, learns macros that are observable from exam-
ples or from domain analysis. But, the examples might not
cover many aspects of the system, or might not always re-
flect that better choices have been made during the search.
Macros learnt from domains are mainly coherently con-
nected or abstraction based; also they cannot capture prop-
erties of a planner in use. Nevertheless, most of these meth-
ods explore restricted macro spaces. Our method, in con-
trast, explores a wider macro space and learns macros that
are somehow not observable from the examples. Moreover,
the learning method does not discover or utilise any spe-
cific structural properties of planners or domains. We have
achieved a convincing, and in many cases dramatic, im-
provement with a number of planners and several domains.
In summary, this paper successfully demonstrates that the
non-observable macros, even the catalytic ones, help achieve
significant improvement in a planner’s performance; so, any
intuitive restrictions on the macro space, as imposed by ex-
isting methods, could be loosing much potential of macros
in planning. As we consider only individual macros for the
time being, we hope to extend our approach to learning a set
of macros either incrementally or using a genetic approach
on macro-sets. In the latter case, the challenge is to explore
both macro space and macro-set space together.
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