1,986 research outputs found

    Field dependent quasiparticles in the infinite dimensional Hubbard model

    Full text link
    We present dynamical mean field theory (DMFT) results for the local spectral densities of the one- and two-particle response functions for the infinite dimensional Hubbard model in a magnetic field. We look at the different regimes corresponding to half-filling, near half-filling and well away from half-filling, for intermediate and strong values of the local interaction UU. The low energy results are analyzed in terms of quasiparticles with field dependent parameters. The renormalized parameters are determined by two different methods, both based on numerical renormalization group (NRG) calculations, and we find good agreement. Away from half-filling the quasiparticle weights, zσ(H)z_\sigma(H), differ according to the spin type σ=\sigma=\uparrow or σ=\sigma=\downarrow. Using the renormalized parameters, we show that DMFT-NRG results for the local longitudinal and transverse dynamic spin susceptibilities in an arbitrary field can be understood in terms of repeated scattering of these quasiparticles. We also check Luttinger's theorem for the Hubbard model and find it to be satisfied in all parameter regimes and for all values of the magnetic field.Comment: 14 pages, 21 figure

    Magnetic Field Effects on Quasiparticles in Strongly Correlated Local Systems

    Full text link
    We show that quasiparticles in a magnetic field of arbitrary strength HH can be described by field dependent parameters. We illustrate this approach in the case of an Anderson impurity model and use the numerical renormalization group (NRG) to calculate the renormalized parameters for the levels with spin σ\sigma, ϵ~d,σ(H)\tilde\epsilon_{\mathrm{d},\sigma}(H), resonance width Δ~(H)\tilde\Delta(H) and the effective local quasiparticle interaction U~(H)\tilde U(H). In the Kondo or strong correlation limit of the model the progressive de-renormalization of the quasiparticles can be followed as the magnetic field is increased. The low temperature behaviour, including the conductivity, in arbitrary magnetic field can be calculated in terms of the field dependent parameters using the renormalized perturbation expansion. Using the NRG the field dependence of the spectral density on higher scales is also calculated.Comment: 15 pages, 17 figure

    Renormalized parameters and perturbation theory for an n-channel Anderson model with Hund's rule coupling: Asymmetric case

    Full text link
    We explore the predictions of the renormalized perturbation theory for an n-channel Anderson model, both with and without Hund's rule coupling, in the regime away from particle-hole symmetry. For the model with n=2 we deduce the renormalized parameters from numerical renormalization group calculations, and plot them as a function of the occupation at the impurity site, nd. From these we deduce the spin, orbital and charge susceptibilities, Wilson ratios and quasiparticle density of states at T=0, in the different parameter regimes, which gives a comprehensive overview of the low energy behavior of the model. We compare the difference in Kondo behaviors at the points where nd=1 and nd=2. One unexpected feature of the results is the suppression of the charge susceptibility in the strong correlation regime over the occupation number range 1 <nd <3.Comment: 9 pages, 17 figure

    Constraint-based Autonomic Reconfiguration

    Get PDF

    Quantum Monte Carlo method for models of molecular nanodevices

    Get PDF
    We introduce a quantum Monte Carlo technique to calculate exactly at finite temperatures the Green function of a fermionic quantum impurity coupled to a bosonic field. While the algorithm is general, we focus on the single impurity Anderson model coupled to a Holstein phonon as a schematic model for a molecular transistor. We compute the density of states at the impurity in a large range of parameters, to demonstrate the accuracy and efficiency of the method. We also obtain the conductance of the impurity model and analyze different regimes. The results show that even in the case when the effective attractive phonon interaction is larger than the Coulomb repulsion, a Kondo-like conductance behavior might be observed.Comment: 5 pages, 4 figure

    Kondo resonance line-shape of magnetic adatoms on decoupling layers

    Full text link
    The zero-bias resonance in the dI/dV tunneling spectrum recorded using a scanning tunneling microscope above a spin-1/2 magnetic adatom (such as Ti) adsorbed on a decoupling layer on metal surface can be accurately fitted using the universal spectral function of the Kondo impurity model both at zero field and at finite external magnetic field. Excellent agreement is found both for the asymptotic low-energy part and for the high-energy logarithmic tails of the Kondo resonance. For finite magnetic field, the nonlinear fitting procedure consists in repeatedly solving the impurity model for different Zeeman energies in order to obtain accurate spectral functions which are compared with the experimental dI/dV curves. The experimental results at zero field are sufficiently restraining to enable an unprecedented reliability in the determination of the Kondo temperature, while at finite fields the results are more ambiguous and two different interpretations are proposed

    Kondo effect of a Co atom on Cu(111) in contact with an Fe tip

    Full text link
    Single Co atoms, which exhibit a Kondo effect on Cu(111), are contacted with Cu and Fe tips in a low-temperature scanning tunneling microscope. With Fe tips, the Kondo effect persists with the Abrikosov-Suhl resonance significantly broadened. In contrast, for Cu-covered W tips, the resonance width remains almost constant throughout the tunneling and contact ranges. The distinct changes of the line width are interpreted in terms of modifications of the Co d state occupation owing to hybridization with the tip apex atoms.Comment: 4 pages, 3 figure

    Topological Kondo effect with Majorana fermions

    Full text link
    The Kondo effect is a striking consequence of the coupling of itinerant electrons to a quantum spin with degenerate energy levels. While degeneracies are commonly thought to arise from symmetries or fine-tuning of parameters, the recent emergence of Majorana fermions has brought to the fore an entirely different possibility: a "topological degeneracy" which arises from the nonlocal character of Majorana fermions. Here we show that nonlocal quantum spins formed from these degrees of freedom give rise to a novel "topological Kondo effect". This leads to a robust non-Fermi liquid behavior, known to be difficult to achieve in the conventional Kondo context. Focusing on mesoscopic superconductor devices, we predict several unique transport signatures of this Kondo effect, which would demonstrate the non-local quantum dynamics of Majorana fermions, and validate their potential for topological quantum computation

    Phonon-assisted Kondo Effect in a Single-Molecule Transistor out of Equilibrium

    Full text link
    The joint effect of the electron-phonon interaction and Kondo effect on the nonequilibrium transport through the single molecule transistor is investigated by using the improved canonical transformation scheme and extended equation of motion approach. Two types of Kondo phonon-satellites with different asymmetric shapes are fully confirmed in the spectral function, and are related to the electron spin singlet or hole spin singlet, respectively. Moreover, when a moderate Zeeman splitting is caused by a local magnetic field, the Kondo satellites in the spin resolved spectral function are found disappeared on one side of the main peak, which is opposite for different spin component. All these peculiar signatures that manifest themselves in the nonlinear differential conductance, are explained with a clear physics picture.Comment: 12 pages, 6 figure
    corecore