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Abstract—Declarative, object-oriented configuration manage-
ment systems are widely used by system administrators. Recently,
logical constraints have been added to such systems to facilitate
the automatic generation of configurations. However, there is no
facility for reasoning about subsequent reconfigurations, such
as those needed in an autonomic configuration system. In this
paper we develop a number of language primitives, which
facilitate not only one-off configuration tasks, but also subsequent
reconfigurations in which the previous state of the system is taken
into account. We show how it can be directly integrated into a
declarative language, and assess its impact on performance.

I. INTRODUCTION

System administrators at large computing installations are
increasingly adopting automated tools which make use of
declarative, object-oriented languages [1], [2], [3]]. These tools
replace low-level scripts, which describe the steps needed
to achieve a given system state with a declarative model
of the goal state of the system. Such tools can be used to
configure workstations, servers, and network hardware, as well
as application-level services.

Recently, logical constraints have been added to such
systems to facilitate the automatic generation of configurations
[4], [5], [6], [7]. Such systems are able to perform verification
of a system configuration, impact-analysis of configuration
changes, generation of valid configurations, and optimisation
of a configuration according to some criteria.

However, there is no facility for reasoning about subsequent
reconfigurations, such as those needed in an autonomic config-
uration system. Instead configuration problems are treated as
one-off tasks: initial configurations of a new system, starting
from scratch. In practice the majority of configuration tasks
are incremental, starting from some existing state and applying
changes which take the existing configuration into account.

Take for example, the task of assigning virtual machines
to physical machines. After a system has been configured
initially, it is desirable for subsequent reconfigurations to take
into account the current allocation of virtual machines so as
not to move virtual machines unnecessarily from one physical
machine to the next.

Such unnecessary moves commonly occur when the con-
straint solver explores a different subsection of the solution
space. This is to be expected when simply re-running a modi-
fied version of a configuration problem. Thus it is necessary to
instead inform the solver about the previous state of the system
and how that state affects subsequent configuration decisions.

We wish to develop an autonomic configuration system.
In this paper we develop a method for taking into account
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the previous state of a declarative configuration system. The
previous state is made available to the constraint solver, pre-
venting unnecessary changes. External parameters are gathered
from the environment. We define primitives for an existing
declarative configuration language that express how the state
affects subsequent reconfigurations. Finally, we evaluate the
performance of our custom reconfiguration models against two
simpler approaches. First, the none strategy; a re-run of the
original model altered to reflect the current system state. Sec-
ond, the automatic strategy, in which custom reconfiguration
goals are replaced with a heuristic constraint which minimises
the number of variables modified by a reconfiguration. We
found that the custom reconfiguration models, which use novel
reconfiguration primitives, performed significantly better than
either of the simpler strategies. We believe that declarative
configuration languages would benefit from the adoption of
such primitives.

Contributions of the paper

1)  Define primitives for expressing reconfiguration con-
straints in a constraint-based language.

2) Extend a declarative configuration language with
state-aware reconfiguration primitives.

3)  Define the translation of the state-aware primitives to
a constraint program.

4)  Show that models which use the reconfiguration
primitives can be solved more efficiently.

5)  Show that translated models can scale to reconfigu-
ration problems of a useful size.

Structure of the paper

First we introduce a declarative configuration language (TI).
Next we explain the notion of reconfiguration, our reconfig-
uration primitives (III). We then describe a method for their
transformation into a CSP (IV). Finally, we provide experi-
mental results measuring the effectiveness and performance of
reconfiguration constraints (VI)).

II. BACKGROUND

Below we give a short example of a configuration modelled
with ConfSolve [4]], an object-oriented declarative configura-
tion language, in which logical constraints on a system can
be specified and solved as a constraint satisfaction problem
(CSP):

class Server {
var hasPublicIP as bool;

}
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class Application {
var host as ref Server;

}

class Apache extends Application {
this.hasPublicIP = true;
}

var sl as Server;
sl.hasPublicIP = true;

var s2 as Server;
s2.hasPublicIP = false;

var apache as Apache;

This example shows a simple problem in which there are
two servers s1 and s2, the former which has a public IP
address. An Apache web server application, apache, is to be
hosted on one of the servers. The constraint solver will decide
which. Apache instances are constrained to be hosted only on
servers with public IP addresses. In this case, apache will be
hosted on s1. The decision variable in this example is ref
host, in the Application class, which is a reference to a
Server instance.

III. RECONFIGURATION

In this paper we propose three constraint-based language
primitives for reconfiguration:

parameters are variables which take
their value from an external
source;

previous value expressions  provide access to the prior
solution,;

init and change blocks allow for separate initial and
reconfiguration constraints

to be specified.

For example, we could use these primitives to express a
virtual machine allocation problem in which reconfiguration
should never move a virtual machine off its current host, unless
that host has failed. For the sake of example, we ignore the
constraints which pack virtual machines onto physical hosts:

class Machine {
param failed as bool;

}

abstract class VM {
var host as ref Machine;

}

// standard rack size
// 4xVM per Machine

var rackl as Machine[48];
var vms as VM[192];

change {
forall vm in vms where !vm.host.failed {
vm.host = “vm.host;

bi
}

The Machine class represents a physical machine, which may
be in a failed state. The param keyword indicates that the

a) Parameter Change
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Fig. 1: Parameter Change vs Migration. Bold arrows indicate
compilation/solving. a) Initial configuration of model m with
parameters P; results in solution S;. Updated parameters
P, are used to find a new solution S;. b) Migration via
modification of model m; to mo along with its parameters
and solution is followed by re-solving to get solution S

value for this variable is taken from some source external to
the model, typically a monitoring system. When the value of
a monitored parameter changes, a reconfiguration is triggered.
The vM class represents a virtual machine, which has a physical
host reference. Variables rackl and vms provide instances
of both physical and virtual machines. Finally, the change
block contains the constraints which are enforced when a
reconfiguration occurs. In this case the change constraint
specifies that if a virtual machine’s host has not failed, then the
value of vm.host must be equal to its value in the previous
solution, ~vm.host. The operator ~ e yields the value of
expression e in the previous solution to the model and may
only be used within a change block. Parameter values are
described as CSON (ConfSolve Object Notation) and provided
in a separate file. The structure of the parameter file must
match the structure of the ConfSolve model, such as in the
following extract, in which the second machine in rackl has
failed:

rackl: [
Machine { failed: false },
Machine { failed: true },
Machine { failed: false },

A. Parameter changes and migrations

Where m is a model, P are the model’s parameters, and
S is the model’s previous solution, initially undefined. There
are two reconfiguration scenarios:

parameter change is a reconfiguration triggered by a
change in value of one of the model’s
parameters P. An external system
monitors and updates parameter val-
ues to reflect the current system state.
is a modification of the model m
itself, altering its abstract syntax tree.
The result is a new model. The
model’s parameters P and previous
solution S may also be correspond-
ingly migrated.

migration
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Fig. 2: Compiling and solving a reconfigurable model. White
boxes are files; shaded boxes are processes. The Gecode CSP
solver is used to find solutions to the compiled MiniZinc
models.

These two reconfiguration scenarios are illustrated in Fig-
urem Both take into account the model m, previous solution S,
and parameters P. Thus when reconfiguring the next solution
S’ is a function of m, S, and P.

Thus a parameter change is explicitly captured in the
model: the parameters which are expected to change regularly,
perhaps every few minutes. A migration is a less-common
alteration of the model itself.

Migrations include changes to the infrastructure or the
kinds of services present, i.e., the removal and addition of
new classes, objects and constraints. Migrations are always
manual edits to the original model. Certain migrations can
be handled automatically by the compiler, without the user
needing to update the state to correspond to the new model.
These migrations are ones in which there are only deletions or
additions to the model, such as increasing the cardinality of a
set of objects, or deleting a variable declaration. Renaming a
variable is an example of a migration which does not fit this
pattern, and would instead require a manual editing of not only
the model, but also the current recorded state.

IV. IMPLEMENTATION

We have implemented our reconfiguration primitives as
an extension of the ConfSolve configuration system [4]. The
ConfSolve compiler translates an object-oriented configuration
model into MiniZinc, a simple logical language for expressing
constraint problems. The MiniZinc model is then solved using
Gecode [8]], a state-of-the-art CSP solver. Figure E] details
the architecture, in which both parameters and the previous
solution are stored in CSON and passed to the ConfSolve
compiler, in addition to the existing model.

V. TRANSLATION TO MINIZINC

An example ConfSolve to MiniZinc translation is given
below. The model contains four object instances of the class
Server which has a solver-assigned id between 1 and 10. A
reconfiguration constraint restricts the value of id to be equal
to its previous value (if any):

class Server {
var id as 1..10;
change { id = 7id; }
}

var servers as Server([4];

The MiniZinc translation of this problem introduces the
prior state in a variable prefixed with o1d_ and translates the
reconfiguration constraint accordingly. The individual fields
are flattened into arrays, indexed by object. The object indices
are in the range 1..4 as there are four instances of Server in
the model:

// MiniZinc

1..4: servers = [1,2,3,4];
array[l..4] of var 1..10: Server_id;
array[l..4] of 1..10: old_Server_id =

[2,4,6,8];
constraint
forall (i in 1..4) (
Server_id[i] = old_Server_id[i];

)i

A. Translation

We combine our reconfiguration primitives with the
ConfSolve language, and provide a formal description of their
translation to MiniZinc.

Syntax of Types:
I

T:= type
bool boolean
int integer
c object
T[] set of T
c[n] set of objects, with cardinality n

The syntax of types for ConfSolve. Identifiers are repre-
sented by metavariables: c is a class name, v is a variable
name, [ is a field name; n is an integer; and b is a boolean.

Syntax of CSON values:
I

Vo= value

1 integer

true | false boolean

¢ {Member*} object

ref Target object reference

Tn{Vi,...,Va} set literal
Member ::= member

v:V variable name : value
Target ::= target

v variable

Target.l field access

Target[i] set access

The translation steps below make use of ConfSolve’s
types and values, the abstract syntax as described in [4] and
reproduced above.

Translation begins with static allocation, in which indices
are assigned to each object, and the upper bound on the number
of instances count(c) is calculated for each class c.



Translation of CSON values [V]:

I

Given a CSON value V/, its translation to MiniZinc is:
when V =true vV V =false V V =1

v
when V = ¢ {Member*} VvV V =c[n]{V1,...,V,}
undefined

when V = T[n]{V4,..
{ for V; € {W1,..

when V' = ref Target
the index of the object O where path(O) = Target

SVl
Vot [ViD )

The MiniZinc translation [V] of a ConfSolve value V
is used throughout the following translations. Boolean and
integer values are translated as literals. The translation of
objects and sets of objects is undefined, this is firstly because
their MiniZinc representation consists of a constant integer
index (or a set of these), which is already know from the static
allocation phase described previously. Secondly, the expansion
of the object’s fields into arrays is handled later as part of the
translation of variables, so there is not always a one to one
correspondence between CSON values and MiniZinc values.

The translation of an object reference is the index of the
object in the model whose path matches the Target expression,
which may be either a variable, a field access, or an indexed
object-set access. Formally, we define it as the object O
with path(O) = Target where path(O) is the CSON Target
expression corresponding to the full path of the object within
the global scope. Each object has a unique Target path, for
example rack[2] .machines[4].hostname.

Parameters

The values of all ConfSolve parameters are contained in
a single CSON abstract syntax tree (AST), which follows
the same structure as the original model. Parameter values
must match their declared type. These do not affect the object
counting performed in the static allocation phase, because it
is based on the type only and not the value. Sets of objects
already have a fixed cardinality as part of their type, so there
is no way to introduce extra objects.

The translation of parameters is described as two rules,
which correspond to class-level and global scopes. These
rules make use of the corresponding CSON value for a given
parameter, that is, the CSON value which has the equivalent
path in the CSON AST as the given parameter. Such a CSON
value must exist for a every parameter.

Translation of global parameter declarations:

The translation of objects and sets of objects remains
unchanged. This is because they are translated to constant
object indices, generated during the static allocation phase.
Thus the purpose of an object parameter is not to specify the
object id, but to allow the values of its fields to be assigned
values.

For all other types, parameters are translated into MiniZinc
constants, which consist of a compound declaration and assign-
ment. Reference parameters are translated in a similar manner,
in which the CSON path to the object is mapped into an object
index via [V].

Translation of class-level parameter declarations:

IFor each declaration of some class ¢ where count(c) > 0,
containing fields param f; as T; ““*-", and corresponding
CSON values V; J El"”, introduce a declaration for each
field f;:
when T =¢[n]VT =¢

the translation of class-level var v as 7', from [4]].
otherwise

array [1..count(c)] of [T;] : c_fi =

[ for j € 1..count(c), [V;] ]

Where class ¢ contains fields param f; as ref ¢; ‘€17,
introduce a declaration for each field f;:

array [1..count(c)] of [¢;] : c_f; = (as above)

Variables nested within classes are translated using an
array containing all instances of a particular field, where
the object index is the index into the array. Objects and sets
of objects are once again translated in the same manner as
var declarations in standard MiniZinc. All other types are
translated as an array for each field, containing the translated
CSON value for each object index in 1..count(c). Reference
parameters are translated in the same manner.

Previous values & change expressions

The previous solution to a model is represented as a CSON
AST. This is the output of a previous run of ConfSolve. As
with parameters, the values in the CSON solution does not
affect the object counting performed in the static allocation
phase, because it is based on type only, and not on value. The
number of objects is therefore fixed.

We assume that the AST of the model has not changed
since it was used to generate the previous solution, however
the value of the parameters may change freely. We also include
some relaxations of this assumption to simplify migrations.

Translation of change and init blocks:

IFor each global declaration param v as T, and
corresponding CSON value V, introduce a declaration:
when T =¢[n]VT =¢

the translation of global var v as T, from [4]
otherwise

[T]:v=1[V]
For each global declaration param v as ref c, and
corresponding CSON value V, introduce a declaration:

[c] : v=1[V]

I 1
Iff performing a reconfiguration, for each expression block

change {e¢; ...e,}, introduce a expression:
et N Nep

Iff performing an initial configuration, for each expression
block init {e; ...e,}, introduce a expression:

et N---Ney

Change and init blocks are expression blocks containing
constraints, and can appear both at the global level and nested



within classes. Their translation is a simple form of conditional
compilation: change blocks are translated as the conjunction
of their constraint expressions only when a re-configuration is
being performed, otherwise they are not translated. Likewise
for init blocks.

Translation of global variable declarations:

For each global declaration var v as T, where T # c[n]A
T # ¢, and corresponding CSON value V, introduce a
declaration:

[T] : old_v =[V]
For each global declaration var v as ref c, introduce a
declaration:

[c] : old_v =[V]

For global variables which are not objects or sets of
objects, a MiniZinc constant is introduced with the appropriate
type, and with value equal to the MiniZinc translation of its
corresponding CSON value. The MiniZinc variable name is
prefixed with ol1d_ as its purpose is to expose the previous
value of that variable within the MiniZinc model. Reference
variables undergo an equivalent translation.

Translation of class-level variable declarations:

I
For each declaration of some class ¢ where count(c) > 0,
containing fields var f; as 7; “*™ and corresponding

CSON values V; J€Ln where T; # c[n] A'T; # ¢, introduce
a declaration for each field f;:

array [1..count(c)] of [T;] : old_c_f; =
[for j € 1..count(c), [V;] ]

If any corresponding CSON value V; is undefined,
then substitute the anonymous variable _ in place of
[V;] and introduce the constraint:

constraint c_f;[j] = old_c_fi[j1]

Where class ¢ contains fields var f; as ref c; ‘€1-™,

introduce a declaration for each field f;:

array [1..count(c)] of [¢;] : old_c_f; = (as above)
L ]

An equivalent translation step is introduced for class-
level variables, resulting in the introduction of old_ prefixed
MiniZinc variables. Variables nested within classes are trans-
lated using an array containing all instances of a particular
field, where the object index is the index into the array.
Variables which declare objects or sets of objects do not have a
translation, because their translation consists of constant object
indexes generated in the static allocation phase, as was the case
with the translation of parameters.

There is a special provision made for when the CSON
value V; corresponding to field f; is not present in the
previous solution’s CSON AST. This is to support migrations
in which variables declaring objects are added and is the only
situation in which this can occur. For example, in a migration
in which a new object is added to an existing model for
which a previous solution already exists. In this case we first
attempt to find the corresponding CSON value in the previous
solution by traversing its AST. When this fails, MiniZinc’s
anonymous variable _ is used in its place and a constraint is

introduced requiring the new and old values of the variable to
be equivalent.

Translation of expressions [ec]:

v 2 o]

old_classof(e)_l[[e]]

if e.l is a sub-expression

L

e.l of some ~e¢’

classof(e)_L [[e]]

~e 2 [e]

otherwise

The previous value expression ~ e is defined as simply
[e], but the rules for both variable (v) translation and mem-
ber expression e.l translation are made context-dependent to
make use of previous values. In the translation of member
expressions, there are now two cases. The second case is the
standard translation which is an array access where [e] is
the object index. The first case applies whenever the member
expression is a sub-expression of a previous-value expression
and results in the same translation except that the resulting
MiniZinc variable receives the old_ prefix. The mechanism
for accessing previous values can now be seen, it is enough to
prefix any variable with ol1d_ to access its prior value which
was introduced during the translation of variable declarations.

Translation of variables [v]:

I
Within the scope of class ¢, the translation [v] of a
variable v is:
when v is a sub-expression of some ~e, and v is not
quantified:
when v is declared in class ¢’ € c*
0ld_c_v][this]
otherwise
old_ v
otherwise
when v is declared in class ¢’ € ¢*
¢’ _v[this]
otherwise
v

Where c* is the set containing ¢ and all its ancestors.
| 1

The translation of variables undergoes a similar modifica-
tion as that of member expressions. When a variable is a sub-
expression of a previous-value expression ~e then its standard
translation is prefixed with o1d_. The standard translation has
two cases; the first for class-level variables, and the second for
global variables.

We impose an additional restriction on when variables
within a previous-value sub-expression are translated with
the ol1d_ prefix. If a variable is quantified, i.e.was intro-
duced by a Fold expression, such as x in the expression
forall (z in e1) (e2), then it is not translated in this manner.
This is because quantified variables are bound to the expression
over which they quantify, thus it is not meaningful to talk about
the previous value of a quantified variable such as ~z, instead
we must quantify over ~e;. This approach has the benefit of
not adding any further complexity to the translation of folds.
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VI. EVALUATION

In order to evaluate our implementation we examine both
the quality of solutions and the impact of reconfiguration on
performance. We compare three reconfiguration strategies:

none ignores the previous system state

custom uses a model’s custom change expressions,
to access previous system state

automatic  uses a simple heuristic in place of a model’s

change expressions

The automatic heuristic introduces a change constraint for
each variable: maximize bool2int(v = ~v). This allows us to
measure the effectiveness of having custom change constraints
as a language feature, rather than having them determined by
the compiler automatically.

We examine three reconfiguration scenarios, which rep-
resent the three modes in which ConfSolve can operate:
a migration, a parameterised model, and a migration of a
parameterised model.

Experimental Setup: The evaluation was performed on a
machine with a 2.5GHz Intel Core 2 Quad processor and 8GB
of RAM, running Ubuntu 12.04. We used the 64-bit MiniZinc
to FlatZinc converter version 1.6.0 with the ——no-optimize
flag, and the 64-bit Gecode FlatZinc interpreter version 3.7.3.

A. Migration: Adding Virtual Machines

We use ConfSolve to generate an assignment of virtual
machines to physical machines in an Infrastructure as a Service
(TaaS) configuration, and then add more virtual machines as a
migration.

Each physical machine is identical, having 8 CPUs and
16GB or memory. Each virtual machine has variables repre-
senting its requirements on the physical machine resources.
These are declared as follows:

class Machine {

var cpu as int = 16; // 8-core
var memory as int = 16384; // 16GB
var disk as int = 2048; // 2TB

class VM {
var host as ref Machine;

var cpu as int = 1;
var memory as int = 768;
var disk as int = 20;

The infrastructure consists of two racks of 48 physical ma-
chines, onto which we wish to allocate 250 virtual machines:

var machines as Machine[48];
var vms as VM[250];

A bin-packing constraint on virtual machine placement
prevents over-provisioning of host resources, i.e., for each
physical machine the sum of required resources must be less
than the amount provided by the machine:

forall m in machines {
sum vm in vms where vm.host = m {
vm.cpu;
} <= m.cpu
&& sum vm in vms where vm.host = m {
VIl.Mmemory;
} <= m.memory
&& sum vm in vms where vm.host = m {
vm.disk;
} <= m.disk;
}i

Finally, a reconfiguration constraint, stating that each vir-
tual machine should remain on its previous host:

change {
forall vm in vms { vm.host = “vm.host; };

}

To perform the evaluation, the size of the virtual machine
set VM[250] is incrementally increased by editing the model
file. The results of scaling this problem up to 500 virtual ma-
chines are shown in Figure 3] The custom change expressions
outperform both the automatic and none strategies, with regard
to both time and memory. The automatic approach quickly
reaches the solver timeout of 10 seconds before completing
its search, though it is still able to produce sub-optimal results
as it progresses.



The quality of the solutions follows a similar trend, with
the custom change expressions performing a perfect recon-
figuration with no reassignments of existing machines. The
automatic strategy quickly tends towards 250 reassignments,
the maximum possible. The none strategy levels-off at 50
reassignments, which reflects the default behaviour of the
Gecode solver.

Result: For this use case, the addition of custom change
expressions to ConfSolve results in both an increase in time
and in particular memory performance of the solver, and
successfully prevents unnecessary configuration changes when
compared with the none and automatic strategies.

B. Parameters: Virtual Server Failure

We use ConfSolve to generate an assignment of virtual
machines to physical machines in an Infrastructure as a Service
(TaaS) configuration, and then fail some of the machines via a
parameter.

Each physical machine is identical, having 2 CPUs and
2GB or memory. A parameter online indicates whether a
machine is online or has failed:

class Machine {
param online as bool;
var cpu as int = 2;
var memory as int = 2048;
var disk as int = 10;

Each virtual machine is identical and has variables repre-
senting its requirements on the physical machine resources:

class VM {
var host as ref Machine;
var cpu as int = 1;
var memory as int =
var disk as int = 5;

The infrastructure consists of 200 physical machines, onto
which we wish to allocate 200 virtual machines, with a
2:1 ratio this means that the physical machines are at 50%
capacity:

var machines as Machine[200];
var vms as VM[200];

A bin packing constraint identical to that in section is
added to the model, which we do not show here. This ensures
that physical machines are not over-provisioned.

Virtual machines are constrained to be hosted only on
machines which are online:

forall vm in vms {
vm.host.online = true;
}i

We wish to distribute the virtual machines across the
infrastructure, leaving headroom, rather than packing them
tightly on to physical machines. As this is a preference we
make use of a soft constraint, to minimise the number of virtual
machines with a common host:

minimize sum vml in vms {
count (vm2 in vms
where vml.host = vm2.host);
}i

Finally, a reconfiguration constraint, which requires each
virtual machine to remain on its previous host as long as that
host was previously online and is so currently. The intent of
this constraint is the same as for the previous example, the
additional complexity comes from the need to take into account
machine failure:

change {
forall m in machines
where m.online && "m.online {
forall vm in vms
where “vm.host = m {
vm.host = “vm.host;
bi
}i

To perform the evaluation, the sizes of both the set of physi-
cal machines and the set of virtual machines are simultaneously
increased in size, while maintaining their ratios. An initial
configuration is performed, followed by a reconfiguration in
which 50% of the machines have their online parameter set
to false.

The results of scaling this problem up to 300 virtual
machines are shown in Figure ] Custom change expressions
narrowly outperform the automatic and none strategies with
regard to time, diverge towards significant improvements with
regard to memory from around 150 machines.

The quality of the solutions forms two distinct categories.
The custom change expressions perform a perfect reconfigura-
tion, in which only 50% of the virtual machines are reassigned.
The automatic and none strategies both perform the maximum
possible number of reassignments, 100%.

Result: For this use case, custom change expressions
are a valuable addition to ConfSolve, resulting in a minimal
reconfiguration, where a maximal one would otherwise have
occurred.

C. Migration with Parameters: Cloudbursting

This evaluation combines a migration with parameter
changes, in order to show that both can occur simultaneously.
We model a scenario known as cloudbursting in which excess
load from an enterprise datacenter may be run on the cloud.

We create an abstract class to represent a host, which may
be either a physical machine with 4 CPUs and 4GB of RAM,
or a cloud, which has no fixed resources. Physical machines
have an online parameter:

abstract class Host {}

class Machine extends Host ({
param online as bool;
var cpu as int = 4;
var memory as int = 4096;

}

class Cloud extends Host {}
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Fig. 4: Virtual Server Failure. a) Solve time, showing a marginal advantage to the custom strategy. b) Solver memory usage, with
a significant advantage to the custom strategy. ¢) Solution quality, showing custom achieving 50% reassignments, the minimum

possible.

Services are tasks which can be placed on hosts, and have
requirements on the amount of CPU and memory required to
run them:

abstract class Service {
var host as ref Host;
var cpu as int;
var memory as int;

}

We define three specific types of task: web, worker, and
database, with differing CPU and memory requirements:

class
cpu

Web extends Service {
2; memory 2048; }

class
cpu

Worker extends Service {
= 2; memory 2048; }

class
cpu

Database extends Service {
4; memory 4096; }

The infrastructure consists of 300 physical machines within
the enterprise, and a single cloud provider:

var enterprise as Machine[300];
var cloud as Cloud;

We create web, worker, and database services in the ratio
2:2:1.

var
var
var

webs as Web[200];
workers as Worker[200];
databases as Database[100];

So that we may more easily quantify over all services, a
set of service references is created, which the solver will
automatically resolve to the declarations above:

var services as ref Service[500];

A bin-packing constraint for the services hosted in the
enterprise should be familiar from the previous examples:

forall m in enterprise {
sum s in services where s.host
s.cpu;
} <= m.cpu

m |

&&

sum s in services where s.host
S.memory;

} <= m.memory;

m {

}i

We do not wish to host services in the cloud if there is
available capacity within the enterprise. The constraint below
states that if the number of services hosted in the cloud is
greater than zero, then the number of services hosted in the
enterprise is equal to the number of enterprise machines which
are online. The —> operator represents logical implication:

count (s in services
where s.host = cloud) > 0 ->
count (s in services

where s.host in enterprise)
count (m in enterprise
where m.online);

We constrain services to be placed only on machines which
are online:

forall s in services {
s.host.online true;

}i

Finally, there is a reconfiguration constraint, similar to
that from section except that machines is substituted
for enterprise and vms for services. This requires each
service to remain on its previous host as long as that host was
previously online and is so currently. The constraint applies
only to machines within the enterprise, not the cloud.

To perform the evaluation, an initial configuration is per-
formed, after which the number of Worker services is doubled
by manually editing the model, as a migration. Additionally,
50% of the machines have their online parameter set to false.

The results of scaling the problem up to 300 machines
are shown in Figure 5} With regard to time, custom change
expressions narrowly outperform the none strategy, while the
automatic strategy tends rapidly towards a solver timeout
at 60 seconds. In terms of memory performance, custom
change expressions significantly outperform both of the other
strategies, showing much better scaling.



The quality of the solutions follow a new pattern. Both the
custom and automatic strategies achieve a perfect reconfigura-
tion, in which only 50% of the services are reassigned. Though
the automatic strategy yields worse results after it starts to
time-out at 250 machines. The none strategy remains poor,
performing the maximum number of reassignments, 100%.

Result: For this use case, custom change expressions
show their value in terms of performance, even though the
automatic strategy is able to provide results of the same quality.
In practice, this problem is most likely to be memory-bound,
thus the custom strategy offers desirable benefits.

VII. RELATED WORK
A. Reconfiguration

Engage [9] is a prototype deployment system which makes
use of the MiniSat SAT solver to solve dependency constraints
between components. It has a small, formalised type system
with component subtyping. It does not include algebraic con-
straints.

The 2011 Google/ROADEF challenge [10] covered a ma-
chine reassignment task at large-scale. It was won by a custom-
coded local search algorithm, which was able to find high-
quality solutions within five minutes.

The bin-repacking scheduling problem was studied in [[11]
and the results applied to the virtual machine manager Entropy.
A custom CSP model of the problem was built, and incor-
porated into Entropy via an open-source CSP solver, which
performed well.

In [12], the Prolog-based DALI multi-agent system is
combined with Lira, a network-based reconfiguration system.
The combined system allows global reconfigurations to be
performed dynamically through the cooperation of the agents.
Reconfiguration tasks are encoded as a set of action rules with
preconditions. This differs significantly from the declarative
approach taken by ConfSolve, in which only the goal state,
and not the steps taken to achieve it, are of concern.

Dynamic Software Updating (DSU) [13]], in which C pro-
grams are updated at runtime, are of relevance to ConfSolve.
This is due to DSU’s ability to infer a patch based on changes
to a source file, in a manner similar to the Unix diff utility.
Some changes ultimately require manual intervention, but the
approach taken to automating this process may be applicable
to ConfSolve’s migrations.

Planit [14] combines a simple system configuration tool
with the LPG planner to perform reconfiguration tasks. It has
a built-in model of machines and components which may
run upon them. Reconfiguration is performed after component
failure by incorporating the non-failed components into the
goal state used by the planner, and updating the initial state
to match the system. This means that reconfigurations which
would require moving a non-failed component are not possible.

The SmartFrog and LCFG configurations tools were com-
bined in [15] to create a prototype tool capable of exploiting
SmartFrog’s component-based peer-to-peer orchestration with
LCFG’s low-level system configuring abilities. Although the
system is able to respond to change, its logic to do so is
custom-coded in Java for each component.

In [16] a graph-based language for reconfiguring of soft-
ware architectures is proposed. Reconfigurations are treated
as operations on graphs, namely additions and removal of
components and connections. The language is procedural, with
scripts specifying a series of actions on components, with
preconditions.

B. Configuration

Declarative configuration tools such as CFEngine [1]] have
not traditionally included constraints. Early experimenters with
constraints adopted Prolog for this purpose [[17], followed [18],
and more recently Yin [19].

The Alloy Analyzer [20] is a SAT-based modelling sys-
tem which shares some commonality with ConfSolve: both
provide an object-oriented specification language with logical
constraints, and both require the user to specify an upper-bound
on the number of objects in the search space. However, Alloy’s
generality goes beyond that of ConfSolve as a system for
model-checking stateful systems. It is unsuitable as a backend
for ConfSolve, in place of MiniZinc, because of its lack of
optimisation constraints.

A key influence on ConfSolve was Cauldron [35], an object-
oriented configuration language based on the CIM [21]] model
of classes, object references, and arrays. Solutions are gener-
ated using the VeriFun theorem prover, which itself relies on
a SAT solver. Unlike ConfSolve, the Cauldron language is not
rigorously defined, whether or not its search is complete is un-
clear, and its translation to SAT is not disclosed. Furthermore,
its prototype implementation does not scale well to problems
beyond tens of machines, as we discovered in [4].

We defined the ConfSolve language in [4], and evaluated its
performance against a virtual infrastructure management prob-
lem. An executable semantics in the form of a formalised trans-
lation to MiniZinc is given. This initial version of ConfSolve,
like its predecessors, performed one-off configuration tasks
only.

VIII. CONCLUSION AND FUTURE WORK

Reconfiguration is an important part of the configuration
process, and incorporating it into a constraint-based generative
configuration system is non-trivial. We have proposed new
features for configuration languages to better achieve this, and
shown that state can be incorporated in a declarative manner
compatible with existing tools.

Our reconfiguration primitives are compatible with existing
object-oriented configuration languages which feature logical
constraints. By describing our primitives using MiniZinc we
provide an executable semantics which can scale to non-trivial
problem sizes using an off-the-shelf CSP solver. Our evaluation
shows that common virtual machine reconfigurations perform
better with our reconfiguration primitives than without.

Future work in this area could take advantage of the
different performance profiles of different solvers, or attempt
to produce optimised MiniZinc constraints. There is scope for
expanding support for automated migrations, and identifying
when an inferred source change can be safely applied to a new
model.
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Fig. 5: Cloudbursting. a) Solve time, showing the automatic strategy timing-out at 60 seconds. b) Solver memory usage, with a
significant advantage to the custom strategy. ¢) Solution quality, showing custom and automatic achieving 50% reassignments,
the minimum possible, until automatic times-out at around 225 machines.

The ConfSolve compiler (v0.7) is written in OCaml and is
available from http://homepages.inf.ed.ac.uk/s0968244/confsolvel
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