511 research outputs found
Thermally Induced Losses in Ultra-Cold Atoms Magnetically Trapped Near Room-Temperature Surfaces
We have measured magnetic trap lifetimes of ultra-cold Rb87 atoms at
distances of 5-1000 microns from surfaces of conducting metals with varying
resistivity. Good agreement is found with a theoretical model for losses
arising from near-field magnetic thermal noise, confirming the complications
associated with holding trapped atoms close to conducting surfaces. A
dielectric surface (silicon) was found in contrast to be so benign that we are
able to evaporatively cool atoms to a Bose-Einstein condensate by using the
surface to selectively adsorb higher energy atoms.Comment: Improved theory curve eliminates discrepancy. JLTP in pres
The Mystery of the Ramsey Fringe that Didn't Chirp
We use precision microwave spectroscopy of magnetically trapped, ultra-cold
87Rb to characterize intra- and inter-state density correlations. The cold
collision shifts for both normal and condensed clouds are measured. The results
verify the presence of the sometimes controversial "factors of two", in
normal-cloud mean-field energies, both within a particular state and between
two distinct spin species. One might expect that as two spin species decohere,
the inter-state factor of two would revert to unity, but the associated
frequency chirp one naively expects from such a trend is not observed in our
data.Comment: Proceedings of the 18th International Conference on Atomic Physics
(ICAP 2002
Decoherence-driven Cooling of a Degenerate Spinor Bose Gas
We investigate the relationship between the coherence of a partially
Bose-condensed spinor gas and its temperature. We observe cooling of the normal
component driven by decoherence as well the effect of temperature on
decoherence rates.Comment: 4 pages, 2 figure
Day-night high resolution infrared radiometer employing two-stage radiant cooling. Part 1 - Two-stage radiant cooler Final report
Design, thermal analysis, testing, and breadboard integration of two-stage radiant cooler for high resolution radiomete
A day-night high resolution infrared radiometer employing two-stage radiant cooling Quarterly report, 1 Apr. - 1 Jul. 1967
Test evaluation of radiant cooler for day-night high resolution infrared radiometer, and electronic design of breadboard radiomete
Spectroscopic insensitivity to cold collisions in a two-state mixture of fermions
We have experimentally demonstrated the absence of spectroscopic resonance
shifts in a mixture of two interacting Fermi gases. This result is linked to
observations in an ultracold gas of thermal bosons. There, the measured
resonance shift due to interstate collisions is independent of the coherence in
the system, and twice that expected from the equilibrium energy splitting
between the two states in a fully decohered cloud. We give a simple theoretical
explanation of these observations, which elucidates the effect of coherent
radiation on an incoherent mixture of atoms
Schooling for violence and peace : how does peace education differ from ‘normal’ schooling?
This article reviews literature on the roles of schooling in both reproducing and actively perpetrating violence, and sets out an historical explanation of why schools are socially constructed in such a way as to make these roles possible. It then discusses notions of peace education in relation to one particular project in England before using empirical data from research on the project to examine contrasts between peace education approaches and ‘normal’ schooling from the viewpoints of project workers, pupils and teachers. It concludes that such contrasts and tensions do indeed exist and that this raises serious questions about the compatibility of peace education and formal schooling
Normal-superfluid interaction dynamics in a spinor Bose gas
Coherent behavior of spinor Bose-Einstein condensates is studied in the
presence of a significant uncondensed (normal) component. Normal-superfluid
exchange scattering leads to a near-perfect local alignment between the spin
fields of the two components. Through this spin locking, spin-domain formation
in the condensate is vastly accelerated as the spin populations in the
condensate are entrained by large-amplitude spin waves in the normal component.
We present data evincing the normal-superfluid spin dynamics in this regime of
complicated interdependent behavior.Comment: 5 pages, 4 fig
Effect of Cold Collisions on Spin Coherence and Resonance Shifts in a Magnetically Trapped Ultra-Cold Gas
We have performed precision microwave spectroscopy on ultracold 87Rbconfined in a magnetic trap, both above and below the Bose-condensation transition. The cold collision frequency shifts for both normal and condensed clouds were measured, which allowed the intrastate and interstate density correlations (characterized by sometimes controversial “factors of 2”) to be determined. Additionally, temporal coherence of the normal cloud was studied, and the importance of mean-field and velocity-changing collisions in preserving coherence is discussed
Alkali Adsorbate Polarization on Conducting and Insulating Surfaces Probed with Bose-Einstein Condensates
A magnetically trapped 87Rb Bose-Einstein condensate is used as a sensitive probe of short-range electrical forces. In particular, the electric polarization of, and the subsequent electric field generated by, 87Rb adsorbates on conducting and insulating surfaces is measured by characterizing perturbations to the magnetic trapping potential using high quality factor condensate excitations. The nature of the alterations to the electrical properties of Rb adsorbates is studied on titanium (metal) and silicon (semiconductor) surfaces, which exhibit nearly identical properties, and on glass (insulator), which displays a smaller transitory electrical effect. The limits of this technique in detecting electrical fields and ramifications for measurements of short-range forces near surfaces are discussed
- …