35,347 research outputs found

    Thermal Model Analysis of Particle Ratios at GSI Ni-Ni Experiments Using Exact Strangeness Conservation

    Get PDF
    The production of hadrons in Ni-Ni at the GSI is considered in a hadronic gas model with chemical equilibrium. Special attention is given to the abundance of strange particles which are treated using the exact conservation of strangeness. It is found that all the data can be described using a temperature T = 70 pm 10 MeV and a baryon chemical potential mu_B = 720 pm 20 MeV.Comment: Revtex, 7 pages, 3 figures in postscript forma

    Octopamine increases the excitability of neurons in the snail feeding system by modulation of inward sodium current but not outward potassium currents

    Get PDF
    Background: Although octopamine has long been known to have major roles as both transmitter and modulator in arthropods, it has only recently been shown to be functionally important in molluscs, playing a role as a neurotransmitter in the feeding network of the snail Lymnaea stagnalis. The synaptic potentials cannot explain all the effects of octopamine-containing neurons on the feeding network, and here we test the hypothesis that octopamine is also a neuromodulator. Results: The excitability of the B1 and B4 motoneurons in the buccal ganglia to depolarising current clamp pulses is significantly (P << 0.05) increased by (10 mu M) octopamine, whereas the B2 motoneuron becomes significantly less excitable. The ionic currents evoked by voltage steps were recorded using 2-electrode voltage clamp. The outward current of B1, B2 and B4 motoneurons had two components, a transient I-A current and a sustained I-K delayed-rectifier current, but neither was modulated by octopamine in any of these three buccal neurons. The fast inward current was eliminated in sodium - free saline and so is likely to be carried by sodium ions. 10 mu M octopamine enhanced this current by 33 and 45% in the B1 and B4 motoneurons respectively (P << 0.05), but a small reduction was seen in the B2 neuron. A Hodgkin-Huxley style simulation of the B1 motoneuron confirms that a 33% increase in the fast inward current by octopamine increases the excitability markedly. Conclusion: We conclude that octopamine is also a neuromodulator in snails, changing the excitability of the buccal neurons. This is supported by the close relationship from the voltage clamp data, through the quantitative simulation, to the action potential threshold, changing the properties of neurons in a rhythmic network. The increase in inward sodium current provides an explanation for the polycyclic modulation of the feeding system by the octopamine-containing interneurons, making feeding easier to initiate and making the feeding bursts more intense

    Particle trapping and banding in rapid solidification

    Get PDF
    Solidification of suspensions of small particles, from nanometer to colloidal (sub-micrometer) sizes, produces biomimetic materials with novel microstructure and expanding applications in microfluidics, nanotechnology and tissue engineering. To facilitate understanding and control of the solidification process, a thermodynamically consistent theory is here developed. We use the Boltzmann particle velocity distribution to determine the probability a particle is engulfed by an advancing solid-liquid interface and obtain the resulting kinetic phase diagram. We demonstrate use of the theory by predicting the formation of bands in rapidly solidified alumina suspensions, in quantitative agreement with experiment

    Synthesis of an integrated cockpit management system

    Get PDF
    The process used in the synthesis of an integrated cockpit management system was discussed. Areas covered included flight displays, subsystem management, checklists, and procedures (both normal and emergency). The process of evolving from the unintegrated conventional system to the integrated system is examined and a brief description of the results presented

    Two-particle propagator and magnetic susceptibility in the Hubbard model- An improved treatment

    Full text link
    We treat the two-particle Green's function in the Hubbard model using the recently developed tau-CPA, a hybrid treatment that applies the coherent-potential approximation (CPA) up to a time tau related to the inverse of the band width, after which the system is averaged using the virtual-crystal approximation (VCA). This model, with suitable approximations, does predict magnetism for a modified Stoner criterion. The evaluation of the two-particle propagator in the tau-CPA requires the solution of the pure CPA, within whose formalism the vertex correction and the weighted Green's functions are obtained. The dynamical susceptibility, including the vertex correction and the weighted scattering by the residual interaction, is calculated and shows a spin wave spectrum in the ferromagnetic regime
    • …
    corecore