35,347 research outputs found
Thermal Model Analysis of Particle Ratios at GSI Ni-Ni Experiments Using Exact Strangeness Conservation
The production of hadrons in Ni-Ni at the GSI is considered in a hadronic gas
model with chemical equilibrium. Special attention is given to the abundance of
strange particles which are treated using the exact conservation of
strangeness. It is found that all the data can be described using a temperature
T = 70 pm 10 MeV and a baryon chemical potential mu_B = 720 pm 20 MeV.Comment: Revtex, 7 pages, 3 figures in postscript forma
Octopamine increases the excitability of neurons in the snail feeding system by modulation of inward sodium current but not outward potassium currents
Background: Although octopamine has long been known to have major roles as both transmitter and modulator in arthropods, it has only recently been shown to be functionally important in molluscs, playing a role as a neurotransmitter in the feeding network of the snail Lymnaea stagnalis. The synaptic potentials cannot explain all the effects of octopamine-containing neurons on the feeding network, and here we test the hypothesis that octopamine is also a neuromodulator. Results: The excitability of the B1 and B4 motoneurons in the buccal ganglia to depolarising current clamp pulses is significantly (P << 0.05) increased by (10 mu M) octopamine, whereas the B2 motoneuron becomes significantly less excitable. The ionic currents evoked by voltage steps were recorded using 2-electrode voltage clamp. The outward current of B1, B2 and B4 motoneurons had two components, a transient I-A current and a sustained I-K delayed-rectifier current, but neither was modulated by octopamine in any of these three buccal neurons. The fast inward current was eliminated in sodium - free saline and so is likely to be carried by sodium ions. 10 mu M octopamine enhanced this current by 33 and 45% in the B1 and B4 motoneurons respectively (P << 0.05), but a small reduction was seen in the B2 neuron. A Hodgkin-Huxley style simulation of the B1 motoneuron confirms that a 33% increase in the fast inward current by octopamine increases the excitability markedly. Conclusion: We conclude that octopamine is also a neuromodulator in snails, changing the excitability of the buccal neurons. This is supported by the close relationship from the voltage clamp data, through the quantitative simulation, to the action potential threshold, changing the properties of neurons in a rhythmic network. The increase in inward sodium current provides an explanation for the polycyclic modulation of the feeding system by the octopamine-containing interneurons, making feeding easier to initiate and making the feeding bursts more intense
Particle trapping and banding in rapid solidification
Solidification of suspensions of small particles, from nanometer to colloidal (sub-micrometer) sizes, produces biomimetic materials with novel microstructure and expanding applications in microfluidics, nanotechnology and tissue engineering. To facilitate understanding and control of the solidification process, a thermodynamically consistent theory is here developed. We use the Boltzmann particle velocity distribution to determine the probability a particle is engulfed by an advancing solid-liquid interface and obtain the resulting kinetic phase diagram. We demonstrate use of the theory by predicting the formation of bands in rapidly solidified alumina suspensions, in quantitative agreement with experiment
Synthesis of an integrated cockpit management system
The process used in the synthesis of an integrated cockpit management system was discussed. Areas covered included flight displays, subsystem management, checklists, and procedures (both normal and emergency). The process of evolving from the unintegrated conventional system to the integrated system is examined and a brief description of the results presented
Two-particle propagator and magnetic susceptibility in the Hubbard model- An improved treatment
We treat the two-particle Green's function in the Hubbard model using the
recently developed tau-CPA, a hybrid treatment that applies the
coherent-potential approximation (CPA) up to a time tau related to the inverse
of the band width, after which the system is averaged using the virtual-crystal
approximation (VCA). This model, with suitable approximations, does predict
magnetism for a modified Stoner criterion. The evaluation of the two-particle
propagator in the tau-CPA requires the solution of the pure CPA, within whose
formalism the vertex correction and the weighted Green's functions are
obtained. The dynamical susceptibility, including the vertex correction and the
weighted scattering by the residual interaction, is calculated and shows a spin
wave spectrum in the ferromagnetic regime
- …