213 research outputs found

    Seismic Explosive Energy Sources and the Possible Impact on Groundwater Quality in the Niger Delta Area of Nigeria

    Get PDF
    The possible impact of the use of seismic explosive energy sources on groundwater quality in the Niger Delta Area of Nigeria was investigated. A 3-Dimensional seismic survey was carried in OML X in the Niger Delta area using dynamite as the energy source. A total of 116,349.2 kg of dynamite was detonated in 60,398 source points in an area of 771.26 square kilometres, an equivalent of explosive densification of 150.85 kg/km2. Each shot point was loaded with a charge of 2kg of dynamite and a piece of electrical detonator. The possible impact of these dynamite shots on the groundwater was monitored using 7 boreholes evenly distributed in the area. The average coefficient of permeability of the soil of the area collected from the depths of 25m and 50m were 0.019cm/s and 0.55cm/s respectively. Water samples from the boreholes were analysed using standard methods. Control samples were taken from the borehole stations a day before detonation of dynamite. Another sampling was carried out 10 days after dynamites detonation. During the study there was regular rainfall and 10 days was considered sufficient for any pollutant resulting from the detonation of the explosives to travelled to the commonly exploited aquifers in the area considering the permeability of the soil. A comparison of the analyses results showed that the detonation of dynamite did not have any noticeable impact on the groundwater quality of the area.Keywords: seismic, explosive, groundwater contamination, Niger Delt

    Api gravities and geochemical evaluation of crude oils from sapele, niger – delta, nigeria

    Get PDF
    The investigation is to provide information on source organic matter input, depositional conditions and the correlation between crude oils recovered from Sapele oilfield in the Niger Delta. A suite of twenty-five crude oils from the Agbada reservoirs (synsedimentary) of the Tertiary Niger Delta (Southern Nigeria) were analysed based on API gravities and geochemically compared with extracts from source rock of the Akata and Agbada Formations. The Sapele shallow reservoirs occur between the depths of 4000ft and 6000ft, containing heavy crudes with API gravities 20 – 22 degrees. The deep reservoirs lie within 7000ft and 12000ft accumulating the light crudes with API gravities of 24.70-35.60 degrees, and viscocity of 1.64cP. The investigated biomarkers indicated that the Sapele oils were derived from mixed marine and terrigenous organic matter and deposited under suboxic conditions. This has been achieved from normal alkane and acyclic isoprenoids distributions, terpane and sterane biomarkers. These oils were also generated from source rock with a wide range of thermal maturity and ranging from early-mature to peak oil window. Based on molecular indicators of organic source input and depositional environment diagnostic biomarkers, one petroleum system operates in the Niger Delta Region; as observed on the source rocks from the Agbada organic – rich shale sediments. Therefore, the hydrocarbon exploration processes should be concentrating on the Akata and Agbada area of the Tertiary strata for determining the source kitchen

    Investigating the mineral composition of proceessed cheese, soy and nunu milks consumed in Abuja and Keffi metropolises of Nigeria

    Get PDF
    Milk and its products are needed for proper body building. Processed cheese, nunu and soy milk consumed within Abuja and Keffi metropolises were analyzed for their mineral contents. X1, Y1, Z1 represents soy milk, nunu and cheese from Abuja metropolis while X2, Y2, Z2 represents sample from Keffi metropolis respectively. Calcium (265.53±0.25 mg/mL), iron (1.19±0.92 mg/mL), potassium (162.77±0.02 mg/mL) were found to be higher in cheese milk (Z1) from Abuja than that (225.82±0.13 mg/mL, 1.05±0.60mg/mL and 130.41±0.04 mg/mL) found in Keffi (Z2) examined respectively, though the amount of sodium present (151.0±0.08 mg/mL) in cheese (Z2) from Keffi is slightly higher than that (150.08±0.01 mg/mL) from Abuja (Z1). Also, Soya milk from Abuja (X1) had highest amount of zinc (0.76±0.00 mg/mL) while that of Keffi (X2) was 0.65±0.3 mg/mL, for magnesium and copper, higher values 18.40±010 mg/mL and 0.25±0.02 mg/mL were recorded for soy milk (X2) from Keffi while soy milk from Abuja (X1) had 17.97±0.20 mg/mL and 0.16±0.01 mg/mL respectively. Chromium was dictated in both cheese samples but not dictated in soya and nunu milks from both metropolises. It is seen from the investigation that cheese had more minerals followed by soya milk. Nunu milk sample had the least quantity of minerals; also all the samples analyzed have minerals present in them. Therefore, they are needed for the proper functioning of the body system Keywords: Analysis, Concentration, Milk, Mineral, Metropolis, Flame Atomic Absorption Spectroscop

    Impact of COVID-19 on surgical emergency presentations in a tertiary hospital in the developing world

    Get PDF
    BACKGROUND: The COVID-19 pandemic and the institution of measures to contain the spread of the virus have disrupted patients' elective and emergency care, with scarce resources being channeled towards care of emergency presentations and containing the virus. The study aimed to assess the impact of COVID-19 on surgical accidents and emergency presentations in a major teaching hospital. METHOD: This was a comparative retrospective study. All presentations between February to July 2019 (non-COVID-19 period) were compared with the same period in 2020 (COVID-19 period). Patients' biodata, including surgical specialty that managed the patient, diagnosis, and treatment offered, were collated and analyzed with IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: I.B.M. Corp. RESULTS: We included 3463 patients in the study; 2419 (69.9%) were males, while 1044(30.1%) were females. The mean age of the patients in 2019 was 31.83 ±19.31 years, and that of 2020 was 34.93±19.99 years (P=0.001). During the lockdown period, emergency surgical presentations declined significantly by 17% (1894 versus 1569: P=0.001). There was a general decline in surgical emergency presentations across surgical specialties, with orthopedic and otorhinolaryngology (E.N.T.) having the greatest impact (313 versus 202 P=0.044). Presentation for trauma decreased by 18% (1394 versus 1144 P=0.711). Operative interventions declined by 47% (292 versus 155 P=0.001). There was a decline of 31% in the number of admissions for in-patient care (420 versus 290 P=0.019). CONCLUSION: The COVID-19 lockdown in Nigeria was associated with a reduction in the number of surgical emergency presentations and surgical interventions

    Optimal extent of completion lymphadenectomy for patients with melanoma and a positive sentinel node in the groin

    Get PDF
    Background: The optimal extent of groin completion lymph node dissection (CLND) (inguinal or ilioinguinal dissection) in patients with melanoma is controversial. The aim of this study was to evaluate whether the extent of groin CLND after a positive sentinel node biopsy (SNB) is associated with improved outcome. Methods: Data from all sentinel node-positive patients who underwent groin CLND at four tertiary melanoma referral centres were retrieved retrospectively. Baseline patient and tumour characteristics were collected for descriptive statistics, survival analyses and Cox proportional hazards regression analyses. Results: In total, 255 patients were included, of whom 137 (537 per cent) underwent inguinal dissection and 118 (463 per cent) ilioinguinal dissection. The overall CLND positivity rate was 188 per cent; the inguinal positivity rate was 155 per cent and the pelvic positivity rate was 93 per cent. The pattern of recurrence, and 5-year melanoma-specific survival, disease-free survival and distant-metastasis free survival rates were similar for both dissection types, even for patients with a positive CLND result. Cox regression analysis showed that type of CLND was not associated with disease-free or melanoma-specific survival. Conclusion: There was no significant difference in recurrence pattern and survival rates between patients undergoing inguinal or ilioinguinal dissection after a positive SNB, even after stratification for a positive CLND result. An inguinal dissection is a safe first approach as CLND in patients with a positive SNB

    Stroke prevalence amongst sickle cell disease patients in Nigeria: a multi-centre study

    Get PDF
    Background: Stroke is a life-changing, debilitating complication of sickle cell disease (SCD). Previous studies had recorded high stroke prevalence amongst this group of patients. Nigeria has a large population of people affected by this condition and this study aims to assess the stroke prevalence in this large population.Methodology: Stroke prevalence data from 14 physicians working in 11 tertiary health centres across the country was collated by doctors using the sickle cell registers and patient case notes. This data was then collated and used to obtain the overall stroke prevalence in adult and children.Results: The stroke prevalence in sickle cell disease patients in Nigeria was observed to be 12.4 per 1000 patients. Prevalence in the adult patients was 17.7 per 1000 patients and 7.4 per 1000 patients in children. Twenty three percent of the affected patients had more than stroke episode.Conclusion: The stroke prevalence in Nigeria is lower than previously recorded rates and further studies will be required to investigate other factors which may play a role.Keywords: sickle cell, stroke, Nigeria, prevalenc

    Effects of deposition time and post-deposition annealing on the physical and chemical properties of electrodeposited CdS thin films for solar cell application

    Get PDF
    CdS thin films were cathodically electrodeposited by means of a two-electrode deposition system for different durations. The films were characterised for their structural, optical, morphological and compositional properties using x-ray diffraction (XRD), spectrophotometry, scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) respectively. The results obtained show that the physical and chemical properties of these films are significantly influenced by the deposition time and post-deposition annealing. This influence manifests more in the as-deposited materials than in the annealed ones. XRD results show that the crystallite sizes of the different films are in the range (9.4 – 65.8) nm and (16.4 – 66.0) nm in the as-deposited and annealed forms respectively. Optical measurements show that the absorption coefficients are in the range (2.7×104 – 6.7×104) cm-1 and (4.3×104 – 7.2×104) cm-1 respectively for as-deposited and annealed films. The refractive index is in the range (2.40 – 2.60) for as-deposited films and come to the value of 2.37 after annealing. The extinction coefficient varies in the range (0.1 – 0.3) in asdeposited films and becomes 0.1 in annealed films. The estimated energy bandgap of the films is in the range (2.48 – 2.50) eV for as-deposited films and becomes 2.42 eV for all annealed films. EDX results show that all the films are S-rich in chemical composition with fairly uniform Cd/S ratio after annealing. The results show that annealing improves the qualities of the films and deposition time can be used to control the film thickness. Keywords: Electrodeposition; two-electrode system; CdS; annealing; deposition time; thin-film

    Cardiovascular testing recovery in Latin America one year into the COVID-19 pandemic: An analysis of data from an international longitudinal survey.

    Get PDF
    The INCAPS COVID Investigators Group, listed by name in the Appendix, thank cardiology and imaging professional societies worldwide for their assistance in disseminating the survey to their memberships. These include alphabetically, but are not limited to, American Society of Nuclear Cardiology, Arab Society of Nuclear Medicine, Australasian Association of Nuclear Medicine Specialists, Australia-New Zealand Society of Nuclear Medicine, Belgian Society of Nuclear Medicine, Brazilian Nuclear Medicine Society, British Society of Cardiovascular Imaging, Conjoint Committee for the Recognition of Training in CT Coronary Angiography Australia and New Zealand, Consortium of Universities and Institutions in Japan, Danish Society of Cardiology, Gruppo Italiano Cardiologia Nucleare, Indonesian Society of Nuclear Medicine, Japanese Society of Nuclear Cardiology, Moscow Regional Department of Russian Nuclear Medicine Society, Philippine Society of Nuclear Medicine, Russian Society of Radiology, Sociedad Española de Medicina Nuclear e Imagen Molecular, Society of Cardiovascular Computed Tomography, and Thailand Society of Nuclear Medicine.Peer reviewe

    Air quality and urban sustainable development: the application of machine learning tools

    Full text link
    [EN] Air quality has an efect on a populationÂżs quality of life. As a dimension of sustainable urban development, governments have been concerned about this indicator. This is refected in the references consulted that have demonstrated progress in forecasting pollution events to issue early warnings using conventional tools which, as a result of the new era of big data, are becoming obsolete. There are a limited number of studies with applications of machine learning tools to characterize and forecast behavior of the environmental, social and economic dimensions of sustainable development as they pertain to air quality. This article presents an analysis of studies that developed machine learning models to forecast sustainable development and air quality. Additionally, this paper sets out to present research that studied the relationship between air quality and urban sustainable development to identify the reliability and possible applications in diferent urban contexts of these machine learning tools. To that end, a systematic review was carried out, revealing that machine learning tools have been primarily used for clustering and classifying variables and indicators according to the problem analyzed, while tools such as artifcial neural networks and support vector machines are the most widely used to predict diferent types of events. The nonlinear nature and synergy of the dimensions of sustainable development are of great interest for the application of machine learning tools.Molina-GĂłmez, NI.; DĂ­az-ArĂ©valo, JL.; LĂłpez JimĂ©nez, PA. (2021). Air quality and urban sustainable development: the application of machine learning tools. International Journal of Environmental Science and Technology. 18(4):1-18. https://doi.org/10.1007/s13762-020-02896-6S118184Al-Dabbous A, Kumar P, Khan A (2017) Prediction of airborne nanoparticles at roadside location using a feed–forward artificial neural network. Atmos Pollut Res 8:446–454. https://doi.org/10.1016/j.apr.2016.11.004Antanasijević D, Pocajt V, Povrenović D, Ristić M, Perić-Grujić A (2013) PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci Total Environ 443:511–519. https://doi.org/10.1016/j.scitotenv.2012.10.110Brink H, Richards JW, Fetherolf M (2016) Real-world machine learning. Richards JW, Fetherolf M (eds) Manning Publications Co. Berkeley, CA. https://www.manning.com/books/real-world-machine-learning. Accessed 26 Apr 2020Cervone G, Franzese P, Ezber Y, Boybeyi Z (2008) Risk assessment of atmospheric emissions using machine learning. Nat Hazard Earth Syst 8:991–1000. https://doi.org/10.5194/nhess-8-991-2008Chen S, Kan G, Li J, Liang K, Hong Y (2018) Investigating China’s urban air quality using big data, information theory, and machine learning. Pol J Environ Stud 27:565–578. https://doi.org/10.15244/pjoes/75159Corani (2005) Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning. Ecol Model 185:513–529. https://doi.org/10.1016/j.ecolmodel.2005.01.008Cruz C, GĂłmez A, RamĂ­rez L, Villalva A, Monge O, Varela J, Quiroz J, Duarte H (2017) Calidad del aire respecto de metales (Pb, Cd, Ni, Cu, Cr) y relaciĂłn con salud respiratoria: caso Sonora, MĂ©xico. Rev Int Contam Ambient 33:23–34. https://doi.org/10.20937/RICA.2017.33.esp02.02de Hoogh K, HĂ©ritier H, Stafoggia M, KĂŒnzli N, Kloog I (2018) Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland. Environ Pollut 233:1147–1154. https://doi.org/10.1016/j.envpol.2017.10.025Franceschi F, Cobo M, Figueredo M (2018) Discovering relationships and forecasting PM10 and PM2.5 concentrations in BogotĂĄ, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmos Pollut Res 9:912–922. https://doi.org/10.1016/j.apr.2018.02.006GarcĂ­a N, Combarro E, del Coz J, Montañes E (2013) A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case study. Appl Math Comput 219:8923–8937. https://doi.org/10.1016/j.amc.2013.03.018Gibert K, SĂ nchez-MĂ rre M, Sevilla B (2012) Tools for environmental data mining and intelligent decision support. In iEMSs. Leipzig, Germany. http://www.iemss.org/society/index.php/iemss-2012-proceedings. Accessed 26 Nov 2018Gibert K, SĂ nchez-MarrĂš M, Izquierdo J (2016) A survey on pre-processing techniques: relevant issues in the context of environmental data mining. Ai Commun 29:627–663. https://doi.org/10.3233/AIC-160710Gounaridis D, Chorianopoulos I, Koukoulas S (2018) Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: the case of Athens. Appl Geogr 90:134–144. https://doi.org/10.1016/j.apgeog.2017.12.001Holloway J, Mengersen K (2018) Statistical machine learning methods and remote sensing for sustainable development goals: a review. Remote Sens 10:1–21. https://doi.org/10.3390/rs10091365Ifaei P, Karbassi A, Lee S, Yoo Ch (2017) A renewable energies-assisted sustainable development plan for Iran using techno-econo-socio-environmental multivariate analysis and big data. Energy Convers Manag 153:257–277. https://doi.org/10.1016/j.enconman.2017.10.014Kadiyala A, Kumar A (2017a) Applications of R to evaluate environmental data science problems. Environ Prog Sustain 36:1358–1364. https://doi.org/10.1002/ep.12676Kadiyala A, Kumar A (2017b) Vector time series-based radial basis function neural network modeling of air quality inside a public transportation bus using available software. Environ Prog Sustain 36:4–10. https://doi.org/10.1002/ep.12523Karimian H, Li Q, Wu Ch, Qi Y, Mo Y, Chen G, Zhang X, Sachdeva S (2019) Evaluation of different machine learning approaches to forecasting PM2.5 mass concentrations. Aerosol Air Qual Res 19:1400–1410. https://doi.org/10.4209/aaqr.2018.12.0450Krzyzanowski M, Apte J, Bonjour S, Brauer M, Cohen A, PrĂŒss-Ustun A (2014) Air pollution in the mega-cities. Curr Environ Health Rep 1:185–191. https://doi.org/10.1007/s40572-014-0019-7LĂ€ssig K, Morik (2016) Computat sustainability. Springer, Berlin. https://doi.org/10.1007/978-3-319-31858-5Li Y, Wu Y-X, Zeng Z-X, Guo L (2006) Research on forecast model for sustainable development of economy-environment system based on PCA and SVM. In: Proceedings of the 2006 international conference on machine learning and cybernetics, vol 2006. IEEE, Dalian, China, pp 3590–3593. https://doi.org/10.1109/ICMLC.2006.258576Liu B-Ch, Binaykia A, Chang P-Ch, Tiwari M, Tsao Ch-Ch (2017) Urban air quality forecasting based on multi- dimensional collaborative support vector regression (SVR): a case study of Beijing-Tianjin-Shijiazhuang. PLoS ONE 12:1–17. https://doi.org/10.1371/journal.pone.0179763Lubell M, Feiock R, Handy S (2009) City adoption of environmentally sustainable policies in California’s Central Valley. J Am Plan Assoc 75:293–308. https://doi.org/10.1080/01944360902952295Ma D, Zhang Z (2016) Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere. J Hazard Mater 311:237–245. https://doi.org/10.1016/j.jhazmat.2016.03.022Madu C, Kuei N, Lee P (2017) Urban sustainability management: a deep learning perspective. Sustain Cities Soc 30:1–17. https://doi.org/10.1016/j.scs.2016.12.012Mellos K (1988) Theory of eco-development. In: Perspectives on ecology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-19598-5_4Ni XY, Huang H, Du WP (2017) Relevance analysis and short-term prediction of PM2.5 concentrations in Beijing based on multi-source data. Atmos Environ 150:146–161. https://doi.org/10.1016/j.atmosenv.2016.11.054Oprea M, Dragomir E, Popescu M, Mihalache S (2016) Particulate matter air pollutants forecasting using inductive learning approach. Rev Chim 67:2075–2081Paas B, Stienen J, VorlĂ€nder M, Schneider Ch (2017) Modelling of urban near-road atmospheric PM concentrations using an artificial neural network approach with acoustic data input. Environments 4:1–25. https://doi.org/10.3390/environments4020026Pandey G, Zhang B, Jian L (2013) Predicting submicron air pollution indicators: a machine learning approach. Environ Sci Proc Impacts 15:996–1005. https://doi.org/10.1039/c3em30890aPeng H, Lima A, Teakles A, Jin J, Cannon A, Hsieh W (2017) Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods. Air Qual Atmos Health 10:195–211. https://doi.org/10.1007/s11869-016-0414-3PĂ©rez-OrtĂ­z M, de La Paz-MarĂ­n M, GutiĂ©rrez PA, HervĂĄs-MartĂ­nez C (2014) Classification of EU countries’ progress towards sustainable development based on ordinal regression techniques. Knowl Based Syst 66:178–189. https://doi.org/10.1016/j.knosys.2014.04.041Phillis Y, Kouikoglou V, Verdugo C (2017) Urban sustainability assessment and ranking of cities. Comput Environ Urban 64:254–265. https://doi.org/10.1016/j.compenvurbsys.2017.03.002Saeed S, Hussain L, Awan I, Idris A (2017) Comparative analysis of different statistical methods for prediction of PM2.5 and PM10 concentrations in advance for several hours. Int J Comput Sci Netw Secur 17:45–52Sayegh A, Munir S, Habeebullah T (2014) Comparing the performance of statistical models for predicting PM10 concentrations. Aerosol Air Qual Res 14:653–665. https://doi.org/10.4209/aaqr.2013.07.0259Shaban K, Kadri A, Rezk E (2016) Urban air pollution monitoring system with forecasting models. IEEE Sens J 16:2598–2606. https://doi.org/10.1109/JSEN.2016.2514378Sierra B (2006) Aprendizaje automĂĄtico conceptos bĂĄsicos y avanzados Aspectos prĂĄcticos utilizando el software Weka. Madrid Pearson Prentice Hall, MadridSingh K, Gupta S, Rai P (2013) Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos Environ 80:426–437. https://doi.org/10.1016/j.atmosenv.2013.08.023Song L, Pang S, Longley I, Olivares G, Sarrafzadeh A (2014) Spatio-temporal PM2.5 prediction by spatial data aided incremental support vector regression. In: International joint conference on neural networks. IEEE, Beijing, pp 623–630. https://doi.org/10.1109/IJCNN.2014.6889521Souza R, Coelho G, da Silva A, Pozza S (2015) Using ensembles of artificial neural networks to improve PM10 forecasts. Chem Eng Trans 43:2161–2166. https://doi.org/10.3303/CET1543361SuĂĄrez A, GarcĂ­a PJ, Riesgo P, del Coz JJ, Iglesias-RodrĂ­guez FJ (2011) Application of an SVM-based regression model to the air quality study at local scale in the AvilĂ©s urban area (Spain). Math Comput Model 54:453–1466. https://doi.org/10.1016/j.mcm.2011.04.017Tamas W, Notton G, Paoli C, Nivet M, Voyant C (2016) Hybridization of air quality forecasting models using machine learning and clustering: an original approach to detect pollutant peaks. Aerosol Air Qual Res 16:405–416. https://doi.org/10.4209/aaqr.2015.03.0193Toumi O, Le Gallo J, Ben Rejeb J (2017) Assessment of Latin American sustainability. Renew Sustain Energy Rev 78:878–885. https://doi.org/10.1016/j.rser.2017.05.013Tzima F, Mitkas P, Voukantsis D, Karatzas K (2011) Sparse episode identification in environmental datasets: the case of air quality assessment. Expert Syst Appl 38:5019–5027. https://doi.org/10.1016/j.eswa.2010.09.148United Nations, Department of Economic and Social Affairs (2019) World urbanization prospects The 2018 Revision. New York. https://doi.org/10.18356/b9e995fe-enWang B (2019) Applying machine-learning methods based on causality analysis to determine air quality in China. Pol J Environ Stud 28:3877–3885. https://doi.org/10.15244/pjoes/99639Wang X, Xiao Z (2017) Regional eco-efficiency prediction with support vector spatial dynamic MIDAS. J Clean Prod 161:165–177. https://doi.org/10.1016/j.jclepro.2017.05.077Wang W, Men C, Lu W (2008) Online prediction model based on support vector machine. Neurocomputing 71:550–558. https://doi.org/10.1016/j.neucom.2007.07.020WCED (1987) Report of the world commission on environment and development: our common future: report of the world commission on environment and development. WCED, Oslo. https://doi.org/10.1080/07488008808408783Weizhen H, Zhengqiang L, Yuhuan Z, Hua X, Ying Z, Kaitao L, Donghui L, Peng W, Yan M (2014) Using support vector regression to predict PM10 and PM2.5. In: IOP conference series: earth and environmental science, vol 17. IOP. https://doi.org/10.1088/1755-1315/17/1/012268WHO (2016) OMS | La OMS publica estimaciones nacionales sobre la exposiciĂłn a la contaminaciĂłn del aire y sus repercusiones para la salud. WHO. http://www.who.int/mediacentre/news/releases/2016/air-pollution-estimates/es/. Accesed 26 Nov 2018Yeganeh N, Shafie MP, Rashidi Y, Kamalan H (2012) Prediction of CO concentrations based on a hybrid partial least square and support vector machine model. Atmos Environ 55:357–365. https://doi.org/10.1016/j.atmosenv.2012.02.092Zalakeviciute R, Bastidas M, Buenaño A, Rybarczyk Y (2020) A traffic-based method to predict and map urban air quality. Appl Sci. https://doi.org/10.3390/app10062035Zeng L, Guo J, Wang B, Lv J, Wang Q (2019) Analyzing sustainability of Chinese coal cities using a decision tree modeling approach. Resour Policy 64:101501. https://doi.org/10.1016/j.resourpol.2019.101501Zhan Y, Luo Y, Deng X, Grieneisen M, Zhang M, Di B (2018) Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ Pollut 233:464–473. https://doi.org/10.1016/j.envpol.2017.10.029Zhang Y, Huan Q (2006) Research on the evaluation of sustainable development in Cangzhou city based on neural-network-AHP. In: Proceedings of the fifth international conference on machine learning and cybernetics, vol 2006. pp 3144–3147. https://doi.org/10.1109/ICMLC.2006.258407Zhang Y, Shang W, Wu Y (2009) Research on sustainable development based on neural network. In: 2009 Chinese control and decision conference. IEEE, pp 3273–3276. https://doi.org/10.1109/CCDC.2009.5192476Zhou Y, Chang F-J, Chang L-Ch, Kao I-F, Wang YS (2019) Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J Clean Prod 209:134–145. https://doi.org/10.1016/j.jclepro.2018.10.24
    • 

    corecore