761 research outputs found

    The influence of the vertical distribution of emissions on tropospheric chemistry

    Get PDF
    The atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy atmospheric chemistry) is used to investigate the effect of height dependent emissions on tropospheric chemistry. In a sensitivity simulation, anthropogenic and biomass burning emissions are released in the lowest model layer. The resulting tracer distributions are compared to those of a former simulation applying height dependent emissions. Although the differences between the two simulations in the free troposphere are small (less than 5%), large differences are present in polluted regions at the surface, in particular for NO<sub>x</sub> (more than 100%), CO (up to 30%) and non-methane hydrocarbons (up to 30%), whereas for OH the differences at the same locations are somewhat lower (15%). Global ozone formation is virtually unaffected by the choice of the vertical distribution of emissions. Nevertheless, local ozone changes can be up to 30%. Model results of both simulations are further compared to observations from field campaigns and to data from measurement stations

    Technical note: The new comprehensive atmospheric chemistry module MECCA

    Get PDF
    In this technical note we present the multi-purpose atmospheric chemistry model MECCA. Owing to its versatility and modular structure, it can be used for tropospheric as well as stratospheric chemistry calculations. Extending the code to other domains (e.g. mesospheric or oceanic chemistry) is easily possible. MECCA contains a comprehensive atmospheric reaction mechanism that currently includes: 1) the basic O<sub>3</sub>, CH<sub>4</sub>, HO<sub>x</sub>, and NO<sub>x</sub> chemistry, 2) non-methane hydrocarbon (NMHC) chemistry, 3) halogen (Cl, Br, I) chemistry, and 4) sulfur chemistry. Not only gas-phase chemistry but also aqueous-phase and heterogeneous reactions are considered. Arbitrary subsets of the comprehensive mechanism can be selected according to the research objectives. The program code resulting from the chemical mechanism can easily be used in any model, from a simple box model to a comprehensive global general circulation model

    Missing Heritability in the Tails of Quantitative Traits? A Simulation Study on the Impact of Slightly Altered True Genetic Models

    Get PDF
    Objective: Genome-wide association studies have identified robust associations between single nucleotide polymorphisms and complex traits. As the proportion of phenotypic variance explained is still limited for most of the traits, larger and larger meta-analyses are being conducted to detect additional associations. Here we investigate the impact of the study design and the underlying assumption about the true genetic effect in a bimodal mixture situation on the power to detect associations. Methods: We performed simulations of quantitative phenotypes analysed by standard linear regression and dichotomized case-control data sets from the extremes of the quantitative trait analysed by standard logistic regression. Results: Using linear regression, markers with an effect in the extremes of the traits were almost undetectable, whereas analysing extremes by case-control design had superior power even for much smaller sample sizes. Two real data examples are provided to support our theoretical findings and to explore our mixture and parameter assumption. Conclusions: Our findings support the idea to re-analyse the available meta-analysis data sets to detect new loci in the extremes. Moreover, our investigation offers an explanation for discrepant findings when analysing quantitative traits in the general population and in the extremes. Copyright (C) 2011 S. Karger AG, Base

    Technical note: Implementation of prescribed (OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the Modular Earth Submodel System (MESSy)

    No full text
    International audienceWe present the submodels OFFLEM, ONLEM, and TNUDGE for the Modular Earth Submodel System (MESSy). Prescribed emissions from input files are handled by OFFLEM. ONLEM deals with online-calculated emissions, i.e., emissions that are calculated during the simulation. The submodel TNUDGE uses the "tracer nudging" technique for pseudo-sources and -sinks. For species with highly uncertain emission fluxes and/or with sufficiently long lifetimes, e.g., CH4, it is common to create such pseudo-fluxes by prescribing the observed mixing ratio of the species at a given boundary (e.g., the mixing ratio of methane at the surface, or the ozone mixing ratio at the tropopause). All three submodels substantially simplify the inclusion of emissions into a model. Specific emissions can easily be switched on or off. New prescribed emissions can be included without rewriting any code. New online emissions only require one additional subroutine containing the new parameterization. A major advantage is that input fields at arbitrary resolution can be used. The problem of incompatible grids between emission data and model is overcome by utilizing the MESSy data import interface. To further simplify the creation of new offline emission data, the preprocessing program EDGAR2NC is provided. EDGAR2NC transforms files from the EDGAR format into the netCDF format which is required by OFFLEM. The presented routines are a part of the community modeling project MESSy and can be made available for use to the atmospheric modeling community

    Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy)

    Get PDF
    International audienceWe present the submodels DRYDEP and SEDI for the Modular Earth Submodel System (MESSy). Dry deposition of gases and aerosols is calculated within DRYDEP, whereas SEDI deals with aerosol particle sedimentation. Dry deposition velocities depend on the near-surface turbulence and the physical and chemical properties of the surface cover (e.g. the roughness length, soil pH or leaf stomatal exchange). The dry deposition algorithm used in DRYDEP is based on the big leaf approach and is described in detail within this Technical Note. The sedimentation submodel SEDI contains two sedimentation schemes: a simple upwind zeroth order scheme and a first order approach

    Technical Note: Simulation of detailed aerosol chemistry on the global scale using MECCA-AERO

    No full text
    International audienceWe present the MESSy submodel MECCA-AERO, which simulates both aerosol and gas phase chemistry within one comprehensive mechanism. Including the aerosol phase into the chemistry mechanism increases the stiffness of the resulting set of differential equations. The numerical aspects of the approach followed in MECCA-AERO are presented. MECCA-AERO requires input of an aerosol dynamical/microphysical model to provide the aerosol size and particle number information of the modes/bins for which the chemistry is explicitly calculated. Additional precautions are required to avoid the double counting of processes, especially for sulphate in the aerosol dynamical and the chemistry model. This coupling is explained in detail. To illustrate the capabilities of the new aerosol submodel, examples for species usually treated in aerosol dynamical models are shown. The aerosol chemistry as provided by MECCA-AERO is very sumptuous and not readily applicable for long-term simulations, though it provides a reference to evaluate simplified approaches

    Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1

    Get PDF
    International audienceThe representation of cloud and precipitation chemistry and subsequent wet deposition of trace constituents in global atmospheric chemistry models is associated with large uncertainties. To improve the simulated trace gas distributions we apply the new submodel SCAV, which includes detailed cloud and precipitation chemistry and present results of the atmospheric chemistry general circulation model ECHAM5/MESSy1. A good agreement with observed wet deposition fluxes for species causing acid rain is obtained. The new scheme enables prognostic calculations of the pH of clouds and precipitation, and these results are also in accordance with observations. We address the influence of detailed cloud and precipitation chemistry on trace constituents based on sensitivity simulations. The results confirm previous results from regional scale and box models, and we extend the analysis to the role of aqueous phase chemistry on the global scale. Some species are directly affected through multiphase removal processes, and many also indirectly through changes in oxidant concentrations, which in turn have an impact on the species lifetime. While the overall effect on tropospheric ozone is relatively small (3 can reach ?20%, and several important compounds (e.g., H2O2, HCHO) are substantially depleted by clouds and precipitation

    Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget

    Get PDF
    International shipping contributes significantly to the fuel consumption of all transport related activities. Specific emissions of pollutants such as sulfur dioxide (SO&lt;sub&gt;2&lt;/sub&gt;) per kg of fuel emitted are higher than for road transport or aviation. Besides gaseous pollutants, ships also emit various types of particulate matter. The aerosol impacts the Earth&apos;s radiation budget directly by scattering and absorbing the solar and thermal radiation and indirectly by changing cloud properties. Here we use ECHAM5/MESSy1-MADE, a global climate model with detailed aerosol and cloud microphysics to study the climate impacts of international shipping. The simulations show that emissions from ships significantly increase the cloud droplet number concentration of low marine water clouds by up to 5% to 30% depending on the ship emission inventory and the geographic region. Whereas the cloud liquid water content remains nearly unchanged in these simulations, effective radii of cloud droplets decrease, leading to cloud optical thickness increase of up to 5&amp;ndash;10%. The sensitivity of the results is estimated by using three different emission inventories for present-day conditions. The sensitivity analysis reveals that shipping contributes to 2.3% to 3.6% of the total sulfate burden and 0.4% to 1.4% to the total black carbon burden in the year 2000 on the global mean. In addition to changes in aerosol chemical composition, shipping increases the aerosol number concentration, e.g. up to 25% in the size range of the accumulation mode (typically &amp;gt;0.1 μm) over the Atlantic. The total aerosol optical thickness over the Indian Ocean, the Gulf of Mexico and the Northeastern Pacific increases by up to 8&amp;ndash;10% depending on the emission inventory. Changes in aerosol optical thickness caused by shipping induced modification of aerosol particle number concentration and chemical composition lead to a change in the shortwave radiation budget at the top of the atmosphere (ToA) under clear-sky condition of about &amp;minus;0.014 W/m² to &amp;minus;0.038 W/m² for a global annual average. The corresponding all-sky direct aerosol forcing ranges between &amp;minus;0.011 W/m² and &amp;minus;0.013 W/m². The indirect aerosol effect of ships on climate is found to be far larger than previously estimated. An indirect radiative effect of &amp;minus;0.19 W/m² to &amp;minus;0.60 W/m² (a change in the atmospheric shortwave radiative flux at ToA) is calculated here, contributing 17% to 39% of the total indirect effect of anthropogenic aerosols. This contribution is high because ship emissions are released in regions with frequent low marine clouds in an otherwise clean environment. In addition, the potential impact of particulate matter on the radiation budget is larger over the dark ocean surface than over polluted regions over land

    Will climate change increase ozone depletion from low-energy-electron precipitation?

    Get PDF
    We investigate the effects of a strengthened stratospheric/mesospheric residual circulation on the transport of nitric oxide (NO) produced by energetic particle precipitation. During periods of high geomagnetic activity, energetic electron precipitation (EEP) is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation including extratropical downwelling, the enhancements of EEP NO&lt;sub&gt;x&lt;/sub&gt; concentrations are expected to be transported to lower altitudes in extratropical regions, becoming more significant in the ozone budget. Changes in the mesospheric residual circulation are also considered. We use simulations with the chemistry climate model system EMAC to compare present day effects of EEP NO&lt;sub&gt;x&lt;/sub&gt; with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.4 μmol/mol at 5 hPa is found in the Southern Hemisphere. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations. In the Northern Hemisphere the EEP NO&lt;sub&gt;x&lt;/sub&gt; effect appears to lose importance due to the different nature of the climate-change induced circulation changes
    • …
    corecore