979 research outputs found

    Evidence for transcription attenuation rendering cryptic a sigmaS- dependent promoter of the osmotically regulated proU operon of Salmonella typhimurium

    Get PDF
    The osmotically regulated proU locus in Escherichia coli has two promoters, P1 and P2, that are recognized, respectively, by the σ S- and σ 70-bearing RNA polymerase holoenzymes. However, the equivalent of the P1 promoter does not appear to exist in Salmonella typhimurium. We demonstrate in this study that wild-type S. typhimurium has a cryptic P1 promoter that is recognized by σ S RNA polymerase in vitro and that a 22-bp deletion from +63 to +84 (relative to the start site of transcription) confers σ S-dependent in vivo expression of a reporter gene fusion to P1. Primer extension analysis of RNA isolated from cells carrying the wild-type and mutant S. typhimurium proU constructs indicated that a primer which hybridizes proximal to +60 is able to detect P1-initiated transcripts from both constructs but a primer which hybridizes distal to +85 is able to do so only from the latter. Our results suggest that the σ S-controlled proU P1 promoter in S. typhimurium may be rendered cryptic because of factor-dependent transcription attenuation within a short distance downstream of the promoter start site

    Effects of H-NS and potassium glutamate on &#963;<SUP>S</SUP>- and &#963;<SUP>70</SUP>-directed transcription in vitro from osmotically regulated P1 and P2 promoters of proU in Escherichia coli

    Get PDF
    We have used supercoiled DNA templates in this study to demonstrate that transcription in vitro from the P1 and P2 promoters of the osmoresponsive proU operon of Escherichia coli is preferentially mediated by the &#963;s and &#963;70-bearing RNA polymerase holoenzymes, respectively. Addition of potassium glutamate resulted in the activation of transcription from both P1 and P2 and also led to a pronounced enhancement of &#963;s selectivity at the P1 promoter. Transcription from P2, and to a lesser extent from P1, was inhibited by the nucleoid protein H-NS but only in the absence of potassium glutamate. This study validates the existence of dual promoters with dual specificities for proU transcription. Our results also support the proposals that potassium, which is known to accumulate in cells grown at high osmolarity, is at least partially responsible for effecting the in vivo induction of proU transcription and that it does so through two mechanisms, directly by the activation of RNA polymerase and indirectly by the relief of repression imposed by H-NS

    A 'resource allocator' for transcription based on a highly fragmented T7 RNA polymerase

    Get PDF
    Synthetic genetic systems share resources with the host, including machinery for transcription and translation. Phage RNA polymerases (RNAPs) decouple transcription from the host and generate high expression. However, they can exhibit toxicity and lack accessory proteins (σ factors and activators) that enable switching between different promoters and modulation of activity. Here, we show that T7 RNAP (883 amino acids) can be divided into four fragments that have to be co‐expressed to function. The DNA‐binding loop is encoded in a C‐terminal 285‐aa ‘σ fragment’, and fragments with different specificity can direct the remaining 601‐aa ‘core fragment’ to different promoters. Using these parts, we have built a resource allocator that sets the core fragment concentration, which is then shared by multiple σ fragments. Adjusting the concentration of the core fragment sets the maximum transcriptional capacity available to a synthetic system. Further, positive and negative regulation is implemented using a 67‐aa N‐terminal ‘α fragment’ and a null (inactivated) σ fragment, respectively. The α fragment can be fused to recombinant proteins to make promoters responsive to their levels. These parts provide a toolbox to allocate transcriptional resources via different schemes, which we demonstrate by building a system which adjusts promoter activity to compensate for the difference in copy number of two plasmids.United States. Office of Naval Research (N00014‐13‐1‐0074)National Institutes of Health (U.S.) (5R01GM095765)National Science Foundation (U.S.) (Synthetic Biology Engineering Research Center (SA5284‐11210))United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship (NDSEG) Program))Hertz Foundation (Fellowship

    A systematic review of contamination (aerosol, splatter and droplet generation) associated with oral surgery and its relevance to COVID-19

    Get PDF
    IntroductionThe current COVID-19 pandemic caused by the SARS-CoV-2 virus has impacted the delivery of dental care globally and has led to re-evaluation of infection control standards. However, lack of clarity around what is known and unknown regarding droplet and aerosol generation in dentistry (including oral surgery and extractions), and their relative risk to patients and the dental team, necessitates a review of evidence relating to specific dental procedures. This review is part of a wider body of research exploring the evidence on bioaerosols in dentistry and involves detailed consideration of the risk of contamination in relation to oral surgery.MethodsA comprehensive search of Medline (OVID), Embase (OVID), Cochrane Central Register of Controlled Trials, Scopus, Web of Science, LILACS and ClinicalTrials.Gov was conducted using key terms and MeSH (Medical Subject Headings) words relating to the review questions. Methodological quality including sensitivity was assessed using a schema developed to measure quality aspects of studies using a traffic light system to allow inter- and intra-study overview and comparison. A narrative synthesis was conducted for assessment of the included studies and for the synthesis of results.ResultsEleven studies on oral surgery (including extractions) were included in the review. They explored microbiological (bacterial and fungal) and blood (visible and/or imperceptible) contamination at the person level (patients, operators and assistants) and/or at a wider environmental level, using settle plates, chemiluminescence reagents or air samplers; all within 1 m of the surgical site. Studies were of generally low to medium quality and highlighted an overall risk of contaminated aerosol, droplet and splatter generation during oral surgery procedures, most notably during removal of impacted teeth using rotatory handpieces. Risk of contamination and spread was increased by factors, including proximity to the operatory site, longer duration of treatment, higher procedural complexity, non-use of an extraoral evacuator and areas involving more frequent contact during treatment.ConclusionA risk of contamination (microbiological, visible and imperceptible blood) to patients, dental team members and the clinical environment is present during oral surgery procedures, including routine extractions. However, the extent of contamination has not been explored fully in relation to time and distance. Variability across studies with regards to the analysis methods used and outcome measures makes it difficult to draw robust conclusions. Further studies with improved methodologies, including higher test sensitivity and consideration of viruses, are required to validate these findings

    Novel Roles of cAMP Receptor Protein (CRP) in Regulation of Transport and Metabolism of Carbon Sources

    Get PDF
    CRP (cAMP receptor protein), the global regulator of genes for carbon source utilization in the absence of glucose, is the best-studied prokaryotic transcription factor. A total of 195 target promoters on the Escherichia coli genome have been proposed to be under the control of cAMP-bound CRP. Using the newly developed Genomic SELEX screening system of transcription factor-binding sequences, however, we have identified a total of at least 254 CRP-binding sites. Based on their location on the E. coli genome, we predict a total of at least 183 novel regulation target operons, altogether with the 195 hitherto known targets, reaching to the minimum of 378 promoters as the regulation targets of cAMP-CRP. All the promoters selected from the newly identified targets and examined by using the lacZ reporter assay were found to be under the control of CRP, indicating that the Genomic SELEX screening allowed to identify the CRP targets with high accuracy. Based on the functions of novel target genes, we conclude that CRP plays a key regulatory role in the whole processes from the selective transport of carbon sources, the glycolysis-gluconeogenesis switching to the metabolisms downstream of glycolysis, including tricarboxylic acid (TCA) cycle, pyruvate dehydrogenase (PDH) pathway and aerobic respiration. One unique regulation mode is that a single and the same CRP molecule bound within intergenic regions often regulates both of divergently transcribed operons

    folA, a New Member of the TyrR Regulon in Escherichia coli K-12

    Get PDF
    The folA gene was identified as a new member of the TyrR regulon by genomic SELEX. Binding of TyrR to two sites in folA activated its transcription. Mutations in the N-terminal or central domain of TyrR, the α subunit of RNA polymerase, or integration host factor all abolished activation of the folA promoter

    Silac mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function

    Get PDF
    Stable isotope labeling by amino acids in cell culture (SILAC) has become a versatile tool for quantitative, mass spectrometry (MS)-based proteomics. Here, we completely label mice with a diet containing either the natural or the 13C6-substituted version of lysine. Mice were labeled over four generations with the heavy diet, and development, growth, and behavior were not affected. MS analysis of incorporation levels allowed for the determination of incorporation rates of proteins from blood cells and organs. The F2 generation was completely labeled in all organs tested. SILAC analysis from various organs lacking expression of β1 integrin, β-Parvin, or the integrin tail-binding protein Kindlin-3 confirmed their absence and disclosed a structural defect of the red blood cell membrane skeleton in Kindlin-3-deficient erythrocytes. The SILAC-mouse approach is a versatile tool by which to quantitatively compare proteomes from knockout mice and thereby determine protein functions under complex in vivo conditions

    Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock.

    Get PDF
    Fustin, J.-M., Kojima, R., Itoh, K., Chang, H.-Y., Shiqi, Y., Zhuang, B., . . . Okamura, H. (2018). Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 115(23), 5980-5985. doi:10.1073/pnas.172137111

    An RxLR effector from phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus

    Get PDF
    The plant immune system is activated following the perception of exposed, essential and invariant microbial molecules that are recognised as non-self. A major component of plant immunity is the transcriptional induction of genes involved in a wide array of defence responses. In turn, adapted pathogens deliver effector proteins that act either inside or outside plant cells to manipulate host processes, often through their direct action on plant protein targets. To date, few effectors have been shown to directly manipulate transcriptional regulators of plant defence. Moreover, little is known generally about the modes of action of effectors from filamentous (fungal and oomycete) plant pathogens. We describe an effector, called Pi03192, from the late blight pathogen Phytophthora infestans, which interacts with a pair of host transcription factors at the endoplasmic reticulum (ER) inside plant cells. We show that these transcription factors are released from the ER to enter the nucleus, following pathogen perception, and are important in restricting disease. Pi03192 prevents the plant transcription factors from accumulating in the host nucleus, revealing a novel means of enhancing host susceptibility
    corecore