13 research outputs found

    Circulating TNF Receptors Are Significant Prognostic Biomarkers for Idiopathic Membranous Nephropathy

    No full text
    <div><p>Idiopathic membranous nephropathy (iMN) is a common cause of nephrotic syndrome in adults. A biomarker to accurately indicate the severity of iMN and predict long-term prognosis is insufficient. Here, we evaluated the clinical significance of circulating tumor necrosis factor receptors (cTNFRs) as prognostic biomarkers of iMN with nephrotic syndrome. A total of 113 patients with biopsy-proven iMN and 43 healthy volunteers were enrolled in this study. Ninety patients with iMN had nephrotic range proteinuria. Levels of cTNFRs were measured by using serum samples collected at the time of initial diagnosis. Levels of cTNFRs were higher in the patients with nephrotic syndrome than in those with subnephrotic range proteinuria or in the healthy volunteers (<i>P</i> for trend <0.001). Estimated glomerular filtration rate and proteinuria tended to worsen as the cTNFRs levels increased. Having a cTNFR1 level within the highest tertile was a significant risk factor for renal progression after adjustment, in comparison with the other tertiles (hazard ratio [HR], 3.39; 95% confidence interval [95% CI], 1.48–7.78; <i>P</i> = 0.004). The cTNFR2 level within the highest tertile also significantly increased the risk of renal progression (HR, 3.29; 95% CI, 1.43–7.54; <i>P</i> = 0.005). Renal tubular TNFRs expression was associated with cTNFRs level. However, the cTNFRs levels were not associated with autoantibody against phospholipase A<sub>2</sub> receptor reactivity/levels or treatment response. This study demonstrated that cTNFRs levels at the time of initial diagnosis could predict renal progression in patients with iMN.</p></div

    Circulating Tumor Necrosis Factor α Receptors Predict the Outcomes of Human IgA Nephropathy: A Prospective Cohort Study

    No full text
    The circulating tumor necrosis factor receptors (TNFRs) could predict the long-term renal outcome in diabetes, but the role of circulating TNFRs in other chronic kidney disease has not been reported. Here, we investigated the correlation between circulating TNFRs and renal histologic findings on kidney biopsy in IgA nephropathy (IgAN) and assessed the notion that the circulating TNFRs could predict the clinical outcome. 347 consecutive biopsy-proven IgAN patients between 2006 and 2012 were prospectively enrolled. Concentrations of circulating TNFRs were measured using serum samples stored at the time of biopsy. The primary clinical endpoint was the decline of estimated glomerular filtration rate (eGFR; ≄ 30% decline compared to baseline). Mean eGFR decreased and proteinuria worsened proportionally as circulating TNFR1 and TNFR2 increased (P < 0.001). Tubulointerstitial lesions such as interstitial fibrosis and tubular atrophy were significantly more severe as concentrations of circulating TNFRs increased, regardless of eGFR levels. The risks of reaching the primary endpoint were significantly higher in the highest quartile of TNFRs compared with other quartiles by the Cox proportional hazards model (TNFR1; hazard ratio 7.48, P < 0.001, TNFR2; hazard ratio 2.51, P = 0.021). In stratified analysis according to initial renal function classified by the eGFR levels of 60 mL/min/1.73 m2, TNFR1 and TNFR2 were significant predictors of renal progression in both subgroups. In conclusion, circulating TNFRs reflect the histology and clinical severity of IgAN. Moreover, elevated concentrations of circulating TNFRs at baseline are early biomarkers for subsequent renal progression in IgAN patients
    corecore