2,452 research outputs found

    Search for Binary Protostars

    Get PDF
    In an effort to shed more light on the formation process of binary stars, we have started a program to study multiplicity among nearby low- and intermediate-mass protostars using the OVRO Millimeter Array. Here, we describe the project and present the first results on the protostellar core in the Bok globule CB230 (L1177). At 10 arcsec resolution, the molecular core is resolved into two components separated by 5000 AU. The morphology and kinematics of the double core suggest that it formed from a single cloud core due to rotational fragmentation.Comment: 4 pages, 2 figures, ALMA conference proceeding

    A close view on the protoplanetary disk in the Bok globule CB26

    Get PDF
    We present new sub-arcsecond-resolution near-infrared polarimetric imaging and millimetre interferometry data on the circumstellar disk system in the Bok globule CB26. The data imply the presence of a M > 0.01 M_sun edge-on disk of >400 AU in diameter, being in Keplerian rotation around a young ~0.35 M_sun star. The mm dust emission from the inner 200 AU is highly optically thick, but the outer parts are optically thin and made of small dust grains. Planetesimal growth in the inner disk could neither be comfirmed nor excluded. The outer optically thin part of the disk is strongly warped. We argue that the CB 26 disk is a very young protoplanetary disk and show that it is comparable to the early solar system.Comment: Conference proceeding "Origins of stars and planets: The VLT view", ESO, Garching, April 24-27 200

    The circumstellar environment of the FU Orionis pre-outburst candidate V1331 Cygni

    Get PDF
    High resolution (~4") aperture synthesis maps of the CO (1→ 0), ^(13)CO (1→0), ^(13)CO (2→1), and asociated continuum emission from the FU Orions candidate V1331 Cygni reveal a massive, 0.5 ± 0.15 M_☉, circumstellar disk surrounded by a flattened gaseous envelope, 6000 x 4400 AU in size, mass >0.32 M_☉. These images and lower resolution measurements also trace a bipolar outflow and gaseous ring, 4.1 by 2.8 x 10^4 AU, mass greater than or equal to 0.07 M_☉, radially expanding at 22 ± 4 kms^(-1). We suggest this ring is a swept-up gaseous torus from an energetic mass ejection stage, possibly an FU Orionis outburst or outburts, ~4 x 10^3 yr ago that imparted >10^(45) ergs into the ambient cloud

    The FU Orionis binary system RNO 1B/1C

    Get PDF
    Observations of CS (7→6) emission reveal a ≥3M_⊙ core, 1.8×10^4 AU in size, surrounding the FU Orionis binary system RNO 1B/1C. Fractional chemical abundances, calculated from LVG and LTE codes, are mostly similar to those in the cold core TMC 1. However, values for Si0/H_2 and CH_(3)0H/H_2 are enhanced, possibly by sputtering reactions or grain-grain collisions in tile outflow associated with the young stars. Aperture syntllesis maps of tile 2.6 and 3.1 mm continuum emission at ~5" and ~9" resolution, respectively, reveal that RNO 1C is surrounded by a flattened, dusty envelope, ~5000 AU in size, with mass ≥1.1 M_⊙. High spatial resolution (~3") interferometer observations of CS (2→1) emission may trace the dense walls of ail outflow cavity comprised of two concentric arcs with dynamical ages of 4×10^3 and 1×10^4 yr. The velocity structure of lower density gas imaged in the CO (1→0) transition is consistent with the arcs being formed by two energetic FU Orionis outbursts. Each event may have imparted more than 4 M_⊙km s^(-1) to the outflow, implying outburst mass loss rates of ~10^(-4) M_⊙ yr^(-1). It appears that RNO 1C is probably the driving source for the outflow and tllat, while pre-main sequence stars are in tile FU Orionis stage, outbursts may dominate both outflow morphology and energetics

    Chemistry in circumstellar disks: CS toward HL Tauri

    Get PDF
    High-resolution millimeter-wave aperture synthesis images of the CS J = 2 → 1 and dust continuum emission toward the young star HL Tauri have been combined with single-dish spectra of the higher J CS transitions in order to probe the chemical and physical structure of circumstellar material in this source. We find that the extended molecular cloud surrounding HL Tau is similar to other Taurus dark cloud cores, having T_(kinetic) ≈ 10-20 K, n_(H2) ≈ 10^4-10^5 cm^(-3) , and x(CS) = N(CS)/N(H_2) ≈ (1-2) x 10^(-8). In contrast, the gas-phase CS abundance in the circumstellar disk is depleted by factors of at least 25-50, and perhaps considerably more. These results are consistent with substantial depletion onto grains, or a transition from kinetically controlled chemistry in the molecular cloud to thermodynamically controlled chemistry in the outer regions of the circumstellar disk. Dust continuum emission at 3.06 mm, although unresolved in a 3".0 beam, appears centered on the stellar position; combined with other millimeter-wave measurements its intensity indicates an emissivity index of β = 1.2 ± 0.3. This β may reflect grain growth via depletion and aggregation or compositional evolution, and suggests that the 3.06 mm dust opacity exceeds unity within 8-10 AU of HL Tauri. Even at millimeter and submillimeter wavelengths, observational studies of other high dipole moment molecules in circumstellar disks may also be hampered by the combination of grain mantle depletion and dust opacity structure in sources viewed nearly edge-on

    IRAS 16293-2422: A very young binary system?

    Get PDF
    We present 4".5 x 2".5 resolution millimeter wavelength observations of the young far-infrared source IRAS 16293-2422 which resolve the continuum emission into two sources, MM 1 and MM 2. These sources coincide with known radio continuum sources and may constitute a very young binary system with a projected separation of 840 AU. Flux measurements from 18 cm to 25 μm show that the majority of the millimeter wavelength emission arises from dust within 300 AU of the individual central objects. The total dynamical mass of 1.1-1.3 M_⊙, coupled with our mass estimates for MM 1 and MM 2, suggests that the mass in circumstellar material is comparable to that of the central stellar cores. Since the stellar masses are constrained to be ≤ 0.5 M_⊙ each, it is likely that the bolometric luminosity of 30-40 L_⊙ is derived mainly from accretion of the observed circumstellar material. Maps of the J = 2, 3-1, 2 transition of SO obtained simultaneously show that this emission is centered on MM 1, with weaker emission in a clumpy distribution to the east and west. No SO emission is detected toward MM 2, indicating an upper limit to the fractional abundance which is a factor of 10 below that toward MM 1. We propose that the SO emission toward MM 1 is a result of the outflow activity associated with this source and that the outlying emission clumps trace regions of mild interaction between the outflow and the ambient cloud

    Variation of Molecular Line Ratios and Cloud Properties in the Arp 299 Galaxy Merger

    Get PDF
    High resolution observations of 12CO (2.''3), 13CO (3.''9), and HCN (5.''4) J=1--0 in the galaxy merger Arp 299 (IC 694 and NGC 3690) show the line ratios vary dramatically across the system. The 12CO/13CO ratio is unusually large, 60 +- 15, at the IC 694 nucleus, where 12CO emission is very strong, and much smaller, 10 +- 3, in the southern extended disk of that galaxy. Elsewhere, the 12CO/13CO line ratio is 5-20, typical of spiral galaxies. The line ratio variation in the overlap between the two galaxies is smaller, ranging from 10 +- 3 in the east to 20 +- 4 in the west. The 12CO/HCN line ratio also varies across Arp 299, although to a lesser degree. HCN emission is bright towards each galaxy nucleus and in the extranuclear region of active star formation; it was not detected in the IC 694 disk, or the eastern part of the overlap region, leading to lower limits of 25 and 20 respectively. By contrast, at the nuclei of IC 694 and NGC 3690 the ratios are 9 +- 1 and 14 +- 3 respectively. In the western part of the overlap region it is 11 +- 3.Comment: 16 pages, 4 postscript figures, to appear in ApJ Letter

    CO aperture synthesis of NGC 4038/9 (ARP 244)

    Get PDF
    Researchers present high-resolution (approx. 6 seconds) CO observations of the merging galaxies NGC 4038/9 made with the Owens Valley Radio Observatory (OVRO) Millimeter Wave Interferometer. The CO observations of Arp 244 were obtained between April and June 1988 using the OVRO Millimeter Wave Interferometer. Two fields with phase centers near the NGC 4039 nucleus and near the NGC 4038 nucleus were observed. The size of the synthesized beam is approximately 6.5 x 7 seconds at PA=72 degrees. The rms in a single cleaned channel map is 0.06 Jy beam(exp -1), corresponding to a brightness temperature of 0.12 K over the synthesized beam. Contour maps of the integrated CO intensity for both interferometer fields are shown. Three CO concentrations are evident. Two are centered near the nuclei of NGC 4038 and NGC 4039, closely correlated with H alpha and radio continuum maxima. A third CO emission region lies about 25 seconds northeast of the NGC 4039 nucleus. A number of radio continuum, H alpha, and 10 micron emission knots appear in this region. The total integrated intensity at the northern nuclear source, 302 K km/s, leads to a molecular mass of 8.3 by 10 to the 8th power solar mass assuming a Galactic CO to H2 conversion factor of 3.0 x 10 to the 20th power H2 cm(-2) (K km/s)(-1). The integrated CO intensity of the southern nuclear source leads to a molecular mass of 2.4 x 10 to the 8th solar mass. The extranuclear CO concentration contains 1.2 x 10 to the 9th power solar mass of molecular gas, extending over 170 km/s, and is resolved in a number of channels. Its large size, mass, and morphology strongly suggest that it is an agglomeration of several clumps

    Effects of spatial non-uniformity on laser dynamics

    Full text link
    Semiclassical equations of lasing dynamics are re-derived for a lasing medium in a cavity with a spatially non-uniform dielectric constant. It is shown that the non-uniformity causes a radiative coupling between modes of the empty cavity. This coupling results in a renormalization of self- and cross-saturation coefficients, which acquire a non-trivial dependence on the pumping intensity. Possible manifestations of these effects in random lasers are discussed.Comment: 4 pages, 1 figure, LaTex. Introduction is significantly rewritten, and the results is placed in the context of random lasin

    Measurement of Circumstellar Disk Sizes in the Upper Scorpius OB Association with ALMA

    Get PDF
    We present detailed modeling of the spatial distributions of gas and dust in 57 circumstellar disks in the Upper Scorpius OB Association observed with ALMA at sub-millimeter wavelengths. We fit power-law models to the dust surface density and CO JJ = 3-2 surface brightness to measure the radial extent of dust and gas in these disks. We found that these disks are extremely compact: the 25 highest signal-to-noise disks have a median dust outer radius of 21 au, assuming an R−1R^{-1} dust surface density profile. Our lack of CO detections in the majority of our sample is consistent with these small disk sizes assuming the dust and CO share the same spatial distribution. Of seven disks in our sample with well-constrained dust and CO radii, four appear to be more extended in CO, although this may simply be due to higher optical depth of the CO. Comparison of the Upper Sco results with recent analyses of disks in Taurus, Ophiuchus, and Lupus suggests that the dust disks in Upper Sco may be ∼3\sim3 times smaller in size than their younger counterparts, although we caution that a more uniform analysis of the data across all regions is needed. We discuss the implications of these results for disk evolution.Comment: 15 pages of text, 7 figures, 3 tables. Accepted in Ap
    • …
    corecore