673 research outputs found
Localized Modes in Open One-Dimensional Dissipative Random Systems
We consider, both theoretically and experimentally, the excitation and
detection of the localized quasi-modes (resonances) in an open dissipative 1D
random system. We show that even though the amplitude of transmission drops
dramatically so that it cannot be observed in the presence of small losses,
resonances are still clearly exhibited in reflection. Surprisingly, small
losses essentially improve conditions for the detection of resonances in
reflection as compared with the lossless case. An algorithm is proposed and
tested to retrieve sample parameters and resonances characteristics inside the
random system exclusively from reflection measurements.Comment: 5 pages, 3 figures, to appear in Phys. Rev. Let
Comment on "Clock Shift in High Field Magnetic Resonance of Atomic Hydrogen"
In this Comment, we reanalyze the experiments on the collision frequency
shift of the b-c and a-d hyperfine transitions in three-dimensional atomic
hydrogen in the presence of, respectively, a and b-state atoms. Accurate
consideration of the symmetry of the spatial and spin part of the diatomic
wavefunction yields the difference a_T-a_S=0.30(5) \AA between the triplet and
singlet s-wave scattering lengths of hydrogen atoms. This corrects the
factor-of two error of the commented work [Phys. Rev. Lett. 101, 263003
(2008)].Comment: 1 pag
Recent developments in the determination of the amplitude and phase of quantum oscillations for the linear chain of coupled orbits
De Haas-van Alphen oscillations are studied for Fermi surfaces (FS)
illustrating the model proposed by Pippard in the early sixties, namely the
linear chain of orbits coupled by magnetic breakdown. This FS topology is
relevant for many multiband quasi-two dimensional (q-2D) organic metals such as
-(BEDT-TTF)Cu(NCS) and
-(BEDT-TTF)CoBr(CHCl) which are considered in
detail. Whereas the Lifshits-Kosevich model only involves a first order
development of field- and temperature-dependent damping factors, second order
terms may have significant contribution on the Fourier components amplitude for
such q-2D systems at high magnetic field and low temperature. The strength of
these second order terms depends on the relative value of the involved damping
factors, which are in turns strongly dependent on parameters such as the
magnetic breakdown field, effective masses and, most of all, effective
Land\'{e} factors. In addition, the influence of field-dependent Onsager phase
factors on the oscillation spectra is considered.Comment: arXiv admin note: text overlap with arXiv:1304.665
Boundary Energies and the Geometry of Phase Separation in Double--Exchange Magnets
We calculate the energy of a boundary between ferro- and antiferromagnetic
regions in a phase separated double-exchange magnet in two and three
dimensions. The orientation dependence of this energy can significantly affect
the geometry of the phase-separated state in two dimensions, changing the
droplet shape and possibly stabilizing a striped arrangement within a certain
range of the model parameters. A similar effect, albeit weaker, is also present
in three dimensions. As a result, a phase-separated system near the percolation
threshold is expected to possess intrinsic hysteretic transport properties,
relevant in the context of recent experimental findings.Comment: 6 pages, including 4 figures; expanded versio
The spatial statistical properties of wave functions in a disordered finite one-dimensional sample
For a given wave function one can define a quantity having a meaning
of its inverse spatial size. The Laplace transform of the distribution function
is calculated analytically for a 1D disordered sample with a finite
length .Comment: LaTEX, 7 pages, Preprint IFUM-456/FT, Milano, Jan.199
Extended quasimodes within nominally localized random waveguides
We have measured the spatial and spectral dependence of the microwave field
inside an open absorbing waveguide filled with randomly juxtaposed dielectric
slabs in the spectral region in which the average level spacing exceeds the
typical level width. Whenever lines overlap in the spectrum, the field exhibits
multiple peaks within the sample. Only then is substantial energy found beyond
the first half of the sample. When the spectrum throughout the sample is
decomposed into a sum of Lorentzian lines plus a broad background, their
central frequencies and widths are found to be essentially independent of
position. Thus, this decomposition provides the electromagnetic quasimodes
underlying the extended field in nominally localized samples. When the
quasimodes overlap spectrally, they exhibit multiple peaks in space.Comment: 4 pages, submitted to PRL (23 December 2005
De Haas-van Alphen effect in two- and quasi two-dimensional metals and superconductors
An analytical form of the quantum magnetization oscillations (de Haas-van
Alphen effect) is derived for two- and quasi two-dimensional metals in normal
and superconducting mixed states. The theory is developed under condition that
the chemical potential is much greater than the cyclotron frequency, which is
proved to be valid for using grand canonical ensemble in the systems of low
dimensionality. Effects of impurity, temperature, spin-splitting and vortex
lattice - in the case of superconductors of type II -, are taken into account.
Contrary to the three dimensional case, the oscillations in sufficiently pure
systems of low dimensionality and at sufficiently low temperatures are
characterized by a saw-tooth wave form, which smoothened with temperature and
concentration of impurities growth. In the normal quasi two-dimensional
systems, the expression for the magnetization oscillations includes an extra
factor expressed through the transfer integral between the layers. The
additional damping effect due to the vortex lattice is found. The criterion of
proximity to the upper critical field for the observation of de Haas-van Alphen
effect in the superconducting mixed state is established.Comment: 18 pages, Latex, revised versio
Metal-insulator transition in hydrogenated graphene as manifestation of quasiparticle spectrum rearrangement of anomalous type
We demonstrate that the spectrum rearrangement can be considered as a
precursor of the metal-insulator transition observed in graphene dosed with
hydrogen atoms. The Anderson-type transition is attributed to the coincidence
between the Fermi level and the mobility edge, which appearance is induced by
the spectrum rearrangement. Available experimental data are thoroughly compared
to the theoretical results for the Lifshitz impurity model
Intrinsic optical bistability of thin films of linear molecular aggregates: The one-exciton approximation
We perform a theoretical study of the nonlinear optical response of an
ultrathin film consisting of oriented linear aggregates. A single aggregate is
described by a Frenkel exciton Hamiltonian with uncorrelated on-site disorder.
The exciton wave functions and energies are found exactly by numerically
diagonalizing the Hamiltonian. The principal restriction we impose is that only
the optical transitions between the ground state and optically dominant states
of the one-exciton manifold are considered, whereas transitions to other
states, including those of higher exciton manifolds, are neglected. The optical
dynamics of the system is treated within the framework of truncated optical
Maxwell-Bloch equations in which the electric polarization is calculated by
using a joint distribution of the transition frequency and the transition
dipole moment of the optically dominant states. This function contains all the
statistical information about these two quantities that govern the optical
response, and is obtained numerically by sampling many disorder realizations.
We derive a steady-state equation that establishes a relationship between the
output and input intensities of the electric field and show that within a
certain range of the parameter space this equation exhibits a three-valued
solution for the output field. A time-domain analysis is employed to
investigate the stability of different branches of the three-valued solutions
and to get insight into switching times. We discuss the possibility to
experimentally verify the bistable behavior.Comment: 13 two-column pages, 8 figures, accepted to the Journal of Chemical
Physic
Probing quantum-mechanical level repulsion in disordered systems by means of time-resolved selectively-excited resonance fluorescence
We argue that the time-resolved spectrum of selectively-excited resonance
fluorescence at low temperature provides a tool for probing the
quantum-mechanical level repulsion in the Lifshits tail of the electronic
density of states in a wide variety of disordered materials. The technique,
based on detecting the fast growth of a fluorescence peak that is red-shifted
relative to the excitation frequency, is demonstrated explicitly by simulations
on linear Frenkel exciton chains.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
- …