636 research outputs found

    Electron-phonon interaction in the solid form of the smallest fullerene C20_{20}

    Full text link
    The electron-phonon coupling of a theoretically devised carbon phase made by assembling the smallest fullerenes C20_{20} is calculated from first principles. The structure consists of C20_{20} cages in an {\it fcc} lattice interlinked by two bridging carbon atoms in the interstitial tetrahedral sites ({\it fcc}-C22_{22}). The crystal is insulating but can be made metallic by doping with interstitial alkali atoms. In the compound NaC22_{22} the calculated coupling constant λ/N(0)\lambda/N(0) is 0.28 eV, a value much larger than in C60_{60}, as expected from the larger curvature of C20_{20}. On the basis of the McMillan's formula, the calculated λ\lambda=1.12 and a μ∗\mu^* assumed in the range 0.3-0.1 a superconducting Tc_c in the range 15-55 K is predicted.Comment: 7 page

    Mesoscopic Phase Fluctuations: General Phenomenon in Condensed Matter

    Full text link
    General conditions for the occurrence of mesoscopic phase fluctuations in condensed matter are considered. The description of different thermodynamic phases, which coexist as a mixture of mesoscopically separated regions, is based on the {\it theory of heterophase fluctuations}. The spaces of states, typical of the related phases, are characterized by {\it weighted Hilbert spaces}. Several models illustrate the main features of heterophase condensed matter.Comment: 23 pages, Latex, no figure

    Displacement and emission currents from PLZT 8/65/35 and 4/95/5 excited by a negative voltage pulse at the rear electrode

    Get PDF
    It is shown that non-prepoled PLZT ceramics, both in ferroelectric and antiferroelectric phase, emit intense current bursts when a negative exciting voltage is applied to the rear surface of the cathode. The spontaneous polarization induced in the bulk by applying the field through the cathode disk, creates a sheet of negative charge on the diode boundary of the ferroelectric. This, in turn, induces such a high electric field at the diode dielectric surface that electrons are ejected out from the ceramic surface into the vacuum. The coherent behaviour of the displacement and emitted current shows clearly that the emission is due to a variation of spontaneous polarization. A second effect generated by the application of the high voltage pulse at the rear side is the formation of a surface plasma. Applying a positive voltage to the anode, electrons are readily transferred through the diode gap

    Electron Emission from Ferroelectric/Antiferroelectric Cathodes Excited by Short High-Voltage Pulses

    Get PDF
    Un-prepoled Lead Zirconate Titanate Lanthanum doped-PLZT ferroelectric cathodes have emitted intense current pulses under the action of a high voltage pulse of typically 8 kV/cm for PLZT of 8/65/35 composition and 25 kV/cm for PLZT of 4/95/5 composition. In the experiments described in this paper, the exciting electric field applied to the sample is directed from the rear surface towards the emitting surface. The resulting emission is due to an initial field emission from the metal of the grid deposited over the emitting surface with the consequent plasma formation and the switching of ferroelectric domains. These electrons may be emitted directly form the crystal or from the plasma. This emission requires the material in ferroelectric phase. In fact, PLZT cathodes of the 8/65/35 type, that is with high Titanium content, showing ferroelectric-paraelectric phase sequence, emit at room temperature, while PLZT cathodes of the 4/95/5 type, that is with low Titanium content, having antiferro-ferro-paraelectric phase sequence, emit strongly at a temperature higher than 130°C

    Sequence analysis of 16S rRNA, gyrB and catA genes and DNA-DNA hybridization reveal that Rhodococcus jialingiae is a later synonym of Rhodococcus qingshengii

    Get PDF
    The results of 16S rRNA, gyrB and catA gene sequence comparisons and reasserted DNA–DNA hybridization unambiguously proved that Rhodococcus jialingiae Wang et al. 2010 and Rhodococcus qingshengii Xu et al. 2007 represent a single species. On the basis of priority R. jialingiae must be considered a later synonym of R. qingshengii .</jats:p

    The scaling limit of the critical one-dimensional random Schrodinger operator

    Full text link
    We consider two models of one-dimensional discrete random Schrodinger operators (H_n \psi)_l ={\psi}_{l-1}+{\psi}_{l +1}+v_l {\psi}_l, {\psi}_0={\psi}_{n+1}=0 in the cases v_k=\sigma {\omega}_k/\sqrt{n} and v_k=\sigma {\omega}_k/ \sqrt{k}. Here {\omega}_k are independent random variables with mean 0 and variance 1. We show that the eigenvectors are delocalized and the transfer matrix evolution has a scaling limit given by a stochastic differential equation. In both cases, eigenvalues near a fixed bulk energy E have a point process limit. We give bounds on the eigenvalue repulsion, large gap probability, identify the limiting intensity and provide a central limit theorem. In the second model, the limiting processes are the same as the point processes obtained as the bulk scaling limits of the beta-ensembles of random matrix theory. In the first model, the eigenvalue repulsion is much stronger.Comment: 36 pages, 2 figure

    Stochastic pump effect and geometric phases in dissipative and stochastic systems

    Full text link
    The success of Berry phases in quantum mechanics stimulated the study of similar phenomena in other areas of physics, including the theory of living cell locomotion and motion of patterns in nonlinear media. More recently, geometric phases have been applied to systems operating in a strongly stochastic environment, such as molecular motors. We discuss such geometric effects in purely classical dissipative stochastic systems and their role in the theory of the stochastic pump effect (SPE).Comment: Review. 35 pages. J. Phys. A: Math, Theor. (in press
    • …
    corecore