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Abstract

We present a newly developed 1-D numerical energy-balance and phase transition supraglacial
lake model: GlacierLake. GlacierLake incorporates snowfall, in situ snow and ice melt, incoming
water from the surrounding catchment, ice lid formation, basal freeze-up and thermal stratifica-
tion. Snow cover and temperature are varied to test lake development through winter and the
maximum lid thickness is recorded. Average wintertime temperatures of −2 to −30◦C and
total snowfall of 0 to 3.45 m lead to a range of the maximum lid thickness from 1.2 to 2.8 m
after �250 days, with snow cover exerting the dominant control. An initial ice temperature of
−15◦C with simulated advection of cold ice from upstream results in 0.6 m of basal freeze-up.
This suggests that lakes with water depths above 1.3 to 3.4 m (dependent on winter snowfall
and temperature) upon lid formation will persist through winter. These buried lakes can provide
a sizeable water store at the start of the melt season, expedite future lake formation and warm
underlying ice even in winter.

Introduction

Mass loss from the Greenland Ice Sheet (GrIS) has significantly accelerated during the last sev-
eral decades to become a major cryospheric contributor to global sea-level rise (Rignot and
others, 2011; Jacob and others, 2012; The IMBIE Team, 2019). Since 1991, 60% of GrIS
mass loss has been attributed to surface meltwater runoff (van den Broeke and others,
2016), with total meltwater set to increase over the 21st century as Arctic warming accelerates
(AMAP, 2017), the capacity of firn to refreeze percolating meltwater decreases (De La Peña
and others, 2015; Mikkelsen and others, 2016; Noël and others, 2017; Steger and others,
2017) and the equilibrium line altitude moves inland (Leeson and others, 2015). These figures
all emphasise the importance of developing a holistic understanding of the GrIS supraglacial
hydrology system (Rennermalm and others, 2013).

Research on supraglacial lakes, which are one component of the supraglacial hydrology sys-
tem, has advanced rapidly during the last decade (Chu, 2014; Nienow and others, 2017).
However, the ways in which future warming will influence the lakes’ spatial and temporal pat-
terns (Box and Ski, 2007; McMillan and others, 2007; Liang and others, 2012; Johansson and
others, 2013; Fitzpatrick and others, 2014) and the surface-to-bed linkages for which they are
frequently responsible (Das and others, 2008; Hoffman and others, 2018), remain poorly con-
strained (Mayaud and others, 2014; Banwell and others, 2016; Koziol and others, 2017), and
are gaining importance as supraglacial lakes are observed to be present over increasing
portions of the ice sheet (Leeson and others, 2015; Gledhill and Williamson, 2017;
Williamson and others, 2018a).

Greenland’s supraglacial lakes can transiently occupy �2.7% of the ablation zone (Box and
Ski, 2007) and form in the same locations year-on-year as a result of ice surface expression of
basal topography (Echelmeyer and others, 1991; Lampkin and VanderBerg, 2011). The lakes
are observed to drain, either rapidly down hydro-fractured moulins (Das and others, 2008;
Doyle and others, 2013) (�10% of lakes; Selmes and others, 2013), or more gradually by
over topping and incising their catchment (Tedesco and others, 2013) (�50% of lakes;
Selmes and others, 2013). The precise conditions that cause some, but not all, lakes to
drain through hydrofracture remain elusive (Williamson and others, 2018b), though the over-
all effect of rapid lake drainage on ice velocity in land-terminating sectors of the GrIS is not as
great as initially thought (Nienow and others, 2017). The moulins they frequently open how-
ever, do exert long-lasting control on the subglacial hydrology system (Banwell and others,
2016; Koziol and others, 2017; Williamson and others, 2018a). Many authors interested in
supraglacial lake processes and effects assume that the �40% of lakes that remain in situ at
the end of the melt season (Selmes and others, 2013) either freeze entirely in winter
(Johansson and others, 2013; Selmes and others, 2013; Koziol and others, 2017), or freeze par-
tially and play no future rule in the hydrology of the GrIS (Arnold and others, 2014). This view
is supported in remote sensing from Miles and others (2017) who suggest full winter freezing
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of lakes based on C-band Sentinel-1 satellite data, although they
acknowledge this conclusion may be a result of the low penetra-
tion of the C-band radar (1–2 m).

Conversely Koenig and others (2015) use L-band IceBridge
airborne radar data to observe winter ‘buried lakes’ (sometimes
called ‘subsurface lakes’) containing liquid water across the entire
periphery of the GrIS, in the same location as MODIS detected
summer lakes. These buried lakes are not normally observable
from surface topography, although radar data shows an average
overlying snow-depth of 0.65 m and an ice-lid thickness of
1.4 m (both are influenced by the timing of IceBridge flights).
Russell (1993) also infers the presence of buried lakes from ice-
sheet marginal meltwater release near Kangerlussuaq, concurrent
with the development of two circular depressions where lakes had
previously been observed 20–30 km inland. The first order esti-
mate of 1.5 Gt of water accumulated in buried lakes (Koenig
and others, 2015) is small in comparison with the 140 Gt believed
to be in firn aquifers (Forster and others, 2014), or the
100–300 Gt of melt lost through GrIS annual surface melt
(Vernon and others, 2013). Nevertheless, a buried lake acts as a
0◦C boundary whenever it is present, warming underlying ice
even as a surface energy input decreases in winter, with potential
implications for ice rheology and therefore fracture mechanics.
A buried lake also acts as a store of water that may expedite the
subsequent summer evolution of the supraglacial hydrological
system. The thermal signature of lakes is important in cryo-
hydrologic warming (Phillips and others, 2010, 2013) as another
way to warm the near-surface ice sheet, and for temperature ana-
lysis where surface features are found to exert a strong influence
on temperature profiles (Catania and Neumann, 2010; Lüthi
and others, 2015; Hills and others, 2017). These studies emphasise
the need for a physically based and rigorous analysis of multi-year
supraglacial lake evolution to provide better information for GrIS
hydrology studies on the fate, and thermal effects, of lakes follow-
ing the end of the summer melt season.

Here, a numerical modelling approach is used to gain a
detailed understanding of the evolution of supraglacial lakes.
GlacierLake is presented: an efficient and realistic model of supra-
glacial lake evolution, applicable across the ablation zone of any
glacier (though modifications may be required for debris covered
glaciers), but used here to investigate lake evolution on the GrIS.
GlacierLake completes a year-long run in half a minute on a
3.2 GHz processor. This allows for GlacierLake’s use across
large areas, and allows coupling with broader hydrological models
if required (e.g. Koziol and Arnold, 2018). A fast run-time also
enables extensive sensitivity testing which adds to the reliability
and transparency of model results.

Existing models

Numerical models of snow, and of lakes underlain by ice or
permafrost have been developed and applied over the last two dec-
ades. The earliest relevant model is from Ebert and Curry (1993)
who focused on meltwater lake formation atop sea ice, based on
original equations by Maykut and Untersteiner (1971). Sea ice
lake models improved over the decades (Morassutti and Ledrew,
1996; Fetterer and Untersteiner, 1998; Taylor and Feltham,
2004; Skyllingstad and others, 2009) culminating in work by
Scott and Feltham (2010), who produced a fully 3-dimensional
lake evolution model for first-year and multi-year sea ice. The ter-
restrial MyLake model of Saloranta and Andersen (2007), origin-
ally developed for phosphorous-phytoplankton dynamics,
performs well for temperature and ice lid thickness modelling,
with a rapid run time. However the exclusion of a lower, spatially
flexible phase boundary and underlying glacier-ice section means

basal freeze-up and its effects on underlying temperature profiles
cannot be constrained.

Models to simulate the evolution of supraglacial lakes began
with Lüthje and others (2006) who derive their analysis from
Ebert and Curry (1993) and use the explicit heat equation discret-
isation from Alexiades and Solomon (1993). Lüthje and
others (2006) examined the abundance of supraglacial lakes in
satellite imagery and combined this with the use of a 1-D
model to examine the effects of a meltwater column on energy
transfer, finding that the basal ablation of lakes is 110–170%
that of the immediate surrounding bare ice. Benedek (2014)
used code from Lüthje and others (2006) to extend the length
of the shortwave radiation path from the lake surface to the
bed, based on refraction at the lake surface. Benedek (2014)
found this caused relatively little change to the overall evolution
of the lakes, with parameter uncertainty (such as surface absorp-
tion of shortwave radiation) having a greater influence. The mod-
els of Lüthje and others (2006), Tedesco and others (2012) and
Benedek (2014) were run for no longer than 30 days, and lid for-
mation, allowance for a transition from bare ice to water, and lid
collapse, were not incorporated. The explicit discretisation of
these models means the time step was held below 6 min to
avoid numerical instability, resulting in greater computational
expense than with an implicit scheme. Lastly, Buzzard and
others (2018) present currently the most physically comprehen-
sive lake model, developed for ice shelves in Antarctica where
firn compaction, saturation and refreezing are important.
However, detailed modelling of these aspects increases the run-
time of the model from minutes to hours and is not required
when the lake forms atop solid ice following early snowmelt.

Model development

Model architecture

GlacierLake was written in MATLAB R2017b using the equations
presented below, with source code and equations adapted from
Benedek (2014) (who adapted source code from Lüthje and
others, 2006), Buzzard and others (2018), Saloranta and
Andersen (2007) and Essery (2015). GlacierLake represents a sin-
gle point in x, y space modelled as a 1m2 column as any scaling
factors cancel. The model is divided into five stages (Fig. 1 and
Table 1). Movement through GlacierLake, and processes at each
stage, are detailed in Table 2 and occur once a given threshold
has been reached. The model is also allowed to move backwards
through stages (for example stage 5 to 3 in Fig. 1) to mimic
year-on-year evolution. The model was developed using weather
data from the Program for Monitoring of the GrIS (PROMICE,
vanAs and others, 2010). The AWS UPE-U, at an elevation of
980 m a.s.l. and 72.89◦N, 53.58◦W, was used for development,
as the record for this station was the most comprehensive of
any PROMICE station in the ablation zone of the GrIS.

GlacierLake comprises two modules. The main module con-
tains cells of constant size throughout the model run (default
0.1 m for upper 15 m and, 1 m below). These cells are in one of
three states: ice, water or ‘slush’, where ice and water coexist in
a ratio dependent upon the total enthalpy of the cell. The density
of water was used for slush, ice and water to avoid a change in cell
depth with state as the difference is small (11%) and therefore
assumed to be insignificant (Lüthje and others, 2006; Benedek,
2014; Buzzard and others, 2018). A second module deals with
snow on the surface when present and incorporates the snow
physics of Essery (2015) (see the Snow cover section and Fig. 2)
to avoid computationally expensive resizing at each timestep as
with Buzzard and others (2018). If the domain depth varies due
to meltwater input, a temporary lake insert comprised cells of
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standard size is used within the main cell column (Fig. 2). A
bucket filling method is used for each new cell to keep cell sizes
uniform, so a new cell is only added when additional meltwater
inflow exceeds 10 cm (as default). If the meltwater inflow input
ceases, the lake insert is combined with the main column in a
one-off operation to reduce complexity in subsequent stages.

Surface energy balance

Surface energy flux in Wm−2 is calculated after Buzzard and
others (2018) who follow Ebert and Curry (1993), as

Ftotal = 1FLW in + (1− a)FSW − 1sT4 + Fsens + Flat, (1)

where ε is the surface emissivity, FLW in is incoming longwave radi-
ation (Wm−2), α is albedo, FSW is incoming shortwave radiation
(Wm−2, separated into water-penetrating and surface radiation
when a lake is present using eqn (12)), σ is the Stefan–
Boltzmann constant (Wm−2 K−4), T is temperature (K), Fsen is
sensible heat flux (Wm−2) and Flat is latent heat flux (Wm−2).
Sensible heat flux is calculated as

Fsens = raC
air
p CTv(Ta − Ts), (2)

where ra is the density of dry air (1.275 kgm−3), Cair
p is the spe-

cific heat capacity of dry air (J kg−1 K−1), CT is a function of
atmospheric stability described in Ebert and Curry (1993)
(eqns (4) and (5)), v is the wind speed (m s−1) and Ta and Ts

are air and surface temperature respectively. Latent heat flux is
calculated as

Flat = raL f CTv(qa − qs), (3)

where Lf is the latent heat of fusion of ice (J kg−1), and qa and qs
are the air and surface specific humidities.

CT is calculated as

CT = CTs 1− 2b′Ri
1+c|Ri|1/2

( )
if Ri , 0

CT = CTs(1+ b′Ri)−2 if Ri ≥ 0,

{
(4)

where CTs = 1.3× 10−3, b′ = 20 and c = 50.986 are constants and

Ri is the bulk Richardson number,

Ri = g(Ta − Ts)Dz
Tav2a

, (5)

where Dz is equal to 10 m following Ebert and Curry (1993).
Humidity is provided as relative (%) by PROMICE weather

stations and converted to specific humidity by first obtaining
the saturation vapour pressure, es(T) at temperature T (◦C),
following Tetens (1930) as

es(T) = 0.611× 107.5T/(T+237.3). (6)

Vapour pressure is obtained using the definition of relative
humidity (RH) as

e = RHes. (7)

The mixing ratio of water vapour, w, is calculated after American
Meteorological Society (2012) as

w = eRd

Rv(p− e)
, (8)

where p is the pressure (Pa), Rd is the specific gas constant for dry
air (J kg−1 K−1) and Rv is the specific gas constant for water
vapour (J kg−1 K−1). Lastly, the specific humidity, q, can be
obtained after American Meteorological Society (2012) using

q = w
w+ 1

. (9)

Lake albedo, α, was calculated following Lüthje and others (2006)
based on a two-stream approximation from Taylor and
Feltham (2004) and adapted for the generally lower albedo for
glacier ice than sea ice as

a = 9702+ 1000e3.6zl

−539+ 20000e3.6zl
, (10)

where zl is the depth of the lake.

Shortwave propagation

The Beer–Lambert law was used to calculate the transfer of short-
wave radiation through water and ice as

Fi = Fbe
−tzi − Fbe

−tzi+1 , (11)

where Fi is the flux at cell i (Wm−2), τ is the shortwave extinction
coefficient (m−1) and zi is the depth of cell i. Fb, the shortwave
radiation entering the water column, is calculated from total
incoming shortwave radiation as

Fb = I0(1− a)Fsw, (12)

Fig. 1. Schematic diagram of model stages with explanations in Table 1. Width of
each stage schematically represents expected residence time. Segment shapes
represent schematic evolution of phase throughout stage. The initial section of
stage 4 is snow free to show that lid can function with or without snow cover.
Height of each column indicates the overall depth of the model domain.

Table 1. Description of model stages

Stage Description

1 Bare ice, no surface snow cover.
2 Snow layer present on top of ice.
3 Lake present above ice.
4 Ice lid overlying lake with/without snow present above.
5 Lid break-up after snowmelt.
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where I0 is the proportion of shortwave radiation absorbed at the
lake surface. The net radiation for the surface cell is then reduced
to (1− I0)(1− a)Fsw.

Lake convection and indexing

The lake is modelled as turbulently convecting at ≥0.1m, follow-
ing Buzzard and others (2018), using the four thirds rule,

Fc(T
∗) = sign(�T − T∗)(rC)lJ|�T − T∗|4/3, (13)

where Fc(T∗) is the energy flux at the lake boundary of tempera-
ture T∗, �T is the average lake temperature, (rC)l is the volumetric
specific heat capacity of water and J is the turbulent heat flux

factor (1.907× 10−5 ms1 K−1/3). Turbulent heat flux is applied
to the first slush or ice cell immediately surrounding the lake.

To correctly apply turbulent mixing, correctly indexing slush,
ice and water cells was necessary. This was implemented by pro-
gressing upwards from the base of the domain and recording the
first and last instances of water between ice sections. This pre-
vented two lakes being separated due to any transient appearance
of one slush cell in the middle of the lake and encourages slush
and ice encroachment from the upper and lower bounds of the
lake.

Lake water is stratified based on temperature following the
approach of Saloranta and Andersen (2007) by using the
UNESCO International Equation of State of Seawater (Loucks
and van Beek, 2005). This equation is applicable here as it deals
with both saline content and temperature. Once lake input is

Table 2. Progression through model stages with brief descriptions of processes occurring at each stage

Trackers monitor events such as initialisation of snow layer to ensure repetition does not occur. Italicised text indicates setup and sub-functions, normal text indicates
conditional statements.
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complete in stage 3 the entire lake insert is combined with the
main model domain in a one-off resizing to simplify model
code in other stages.

Snow cover

The snow layer is adapted to be coupled to ice, rather than soil as
developed by Essery (2015). Further details, including changing
snow conductivity, compaction of snow over time, water content
calculation and the initialisation of snow conductivity, can be
found within Essery (2015). Realistic values for snow density
(200−500 kgm−3) are used for the conduction subfunction.
Calculations for snow are completed at the beginning of each
time step, to allow snow properties to be used subsequently in
the conduction subfunction. When the snow layer becomes
liquid, the snow layer is eliminated. Following results of sensitivity
tests that found the influence of this water to be minor in com-
parison with meltwater flow into the lake, this water is not intro-
duced into the lake. If refreezing occurs after partial melting of the
snow layer, the density and thermal conductivity are updated to
account for the proportion of the snow layer that is then solid
ice based on the relative proportion of snow, ice and water.

Enthalpy and heat diffusion

By default, the model is initialised as an ice column with tempera-
ture linearly interpolated between a surface and basal temperature
specified by the user. Temperature is calculated from the cell’s
enthalpy as below, or in reverse if necessary as

where Ti is the temperature at each grid cell (K), Ei is the enthalpy
at each grid cell (J m−2), rwater is the density of water (kgm−3),
Cice is the specific heat capacity of ice (J(kg K)

−1), Cwater is the spe-
cific heat capacity of water (J(kg K)−1) and dz is the thickness of
the cell. Eicei and Ewateri are the enthalpy thresholds for ice and
water respectively (Jm−2). The model space uses unit metre
squares in the x and y direction.

The proportion of each cell that is water, li, is calculated as

li = 0 if Ei ≤ Eicei
li = Ei−rwaterCice dzTmeltL f

rwater dz
if Eicei , Ei , Ewateri

li = 1 if Ei ≥ Ewateri .

⎧⎪⎨
⎪⎩ (15)

Heat diffusion is calculated using a backward-time, centred-space
approach to enable much longer time steps (tested up to 2 h)
whilst maintaining numerical stability when compared to the
use of forward-time, centred-space after Lüthje and others (2006)
and Alexiades and Solomon (1993). The enthalpy change is calcu-
lated from temperature difference at each step, which remains
valid unless a cell changes from ice to water or vice versa in
one time step (an eventuality which depends on the time step
and grid cell thickness and unlikely to occur whilst the model
remains stable due to the high latent heat of melting/freezing).
The one-dimensional heat diffusion equation,

∂T
∂t

= K
∂2T
∂z2

, (16)

Fig. 2. Construction of separate snow module (left) and the lake insert contained within the main module (right) during meltwater inflow. The lake insert size is
increased discretely whereas the snow module size is increased continuously. The lake insert is combined with the main grid after meltwater inflow is complete.
The grid size for snow/ice/slush cells remains constant in the upper section of the model but can increase in deeper cells (not shown in this figure).

Ti = Ei
rwaterCice dz

if Ei ≤ Eicei
Ti = Tmelt if Eicei , Ei , Ewateri
Ti = Ei

rwaterCice dz
− 1

Cwater
(CiceTmelt + L f − CwaterTmelt) if Ei ≥ Ewateri ,

⎧⎪⎨
⎪⎩ (14)
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(here excluding surface energy flux which is incorporated earlier
in each timestep) is discretised to allow for non-uniform layer
spacing as a result of meltwater input, snowfall and larger deep
cells as

Tn+1
i − Tn

i

Dt
= Kn+1

i+1/2

Tn+1
i+1 − Tn

i

(Dzn+1
i+1/2)

2 − Kn+1
i−1/2

Tn+1
i − Tn

i−1

(Dzn+1
i−1/2)

2 , (17)

where n is the time step, i is the cell index, Dx is the distance
between the midpoints of two adjacent cells (m) and Dt is the
time step. The thermal diffusivity of each cell is calculated as

Kn
i = lni Kwater + (1− lni )Kice, (18)

and the intermediate values between cells are obtained as depth
weighted averages. For convenience, eqn (17) is simplified with
the use of the Sn+1

i term,

Sn+1
i = Kn+1

i
Dt

(Dzn+1
i )2

, (19)

to give

Tn
i = −Sn+1

i+1/2T
n+1
i+1 + (1+ Sn+1

i+1/2 + Sn+1
i−1/2)T

n+1
i

− Sn+1
i−1/2T

n+1
i−1 . (20)

A zero-flux boundary condition was specified for the base of the
domain with the ice temperature of the bottom cell initially set at
−5◦C. The default size of the upper cells is 0.1 m, enlarged to 1 m
for the lowermost 30 cells to allow a large spatial domain without
significantly increasing run-time. Equation (20) can then be
entered into a system of simultaneous equations using a tridiago-
nal matrix generalised to a given number of model layers and
solved as a matrix equation at each time step. The temperature
of the surface cell is updated at each time step according to
eqn (1) prior to heat diffusion.

Model testing

Sensitivity testing

Testing was conducted to determine the sensitivity of important
GlacierLake outputs to parameter uncertainty. Normalised sensi-
tivity coefficients for seven input parameters and six important
output measures (Table 3) were calculated following Loucks and
van Beek (2005) as

Q(P0 + DP)− Q(P0 − DP)| |
2DP

× P0
Q(P0)

, (21)

where Q(P0 + DP) is the output value Q when forced with a

parameter of value P0 + DP, P0 is the initial parameter value
and DP is variation away from P0.

Figure 3 shows sensitivity coefficients. Most uncertainty is
confined to albedo and the I0 term (proportion of shortwave radi-
ation absorbed at the lake surface) with the model output being
fairly insensitive (sensitivity coefficient ≤0.2 excluding lake
depth sensitivity to meltwater input) to other parameters. Many
parameters are hard to obtain precisely and are subject to tem-
poral and spatial variability, so this low sensitivity to parameter
uncertainty promotes confidence in GlacierLake’s results. The I0
term merits further consideration and is covered in the discussion.

Tuning

The only published in-situ measurements of lake bottom ablation
and lake depth come from Tedesco and others (2012); data
which were also used by Banwell and others (2012a). The record
from Lake Ponting (69.589 N, −49.783 E, 962 m, data from
15th–19th June 2011) was compared to a GlacierLake run from
24th September 2009–1st August 2010, which was driven with
GC-Net AWS data as processed by Banwell and others (2012b),
with incoming long wave radiation calculated at each time step
within GlacierLake using equations from Banwell and
others (2012b). For precipitation input, RACMO2.3p2 was used
(Noël and others, 2018). The change in the I0 value resulted in
a large variation in the model output. An I0 value of 0.8, slightly
greater than the value of 0.6 used by Lüthje and others (2006),
Tedesco and others (2012), Benedek (2014) and Buzzard and

Table 3. Parameters, parameter values and outputs used in sensitivity testing

Parameters Initial Lower value Upper value Outputs

I0 0.6 0.4 0.8 Maximum lid thickness (Lid max)
Meltwater inflow multiplier (Mmult) 1 0 2 Lake depth before lid formation (Lake max)
Albedo multiplier (amult) 1 0.8 1.05 Lake formation day (Lake form)
Initial basal temperature (Tbasal) −5 −15 −1 Lid formation day (Lid form)
Initial surface temperature (Tsurface) −4 −10 −1 Lid breakup day (Lid break)
Initial snow density (rsnow) 180 50 250 Maximum average lake temperature (Lake T)
Meltwater inflow temperature (MT ) 0.5 0.2 1.2

Temperature units are ◦C, depth and thickness in m and density in kgm−3.

Fig. 3. Inter-comparison of sensitivity coefficients. Ordered by greatest sum uncer-
tainty in columns and then rows. Abbreviations shown in Table 3. Note exponential
scale for colour bar.
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others (2018) produced the output seen in Fig. 4. Values set as
default following tuning can be found within the main function
of the supplied code. GlacierLake is not intended to predict the
evolution of specific, individual lakes with absolute accuracy,
but this test shows that it is well suited for modelling broad trends
and for understanding the behaviour of supraglacial lakes in
Greenland. Large-scale comparison to remotely sensed lid thick-
ness is beyond the scope of this study.

Air temperature and precipitation variation

Precipitation and temperature vary across the spatial domain of
lake occurrence in Greenland (Bromwich and others, 2001;
Gledhill and Williamson, 2017) and exert strong controls over
ice lid formation within GlacierLake. While arbitrary, the follow-
ing temperature and precipitation ranges were chosen to observe
the behaviour of GlacierLake within, and slightly beyond, condi-
tions where supraglacial lakes may reasonably be expected to
form across the GrIS. Testing the relative importance of precipi-
tation and temperature on lid formation enables a range of
expected lid thicknesses at the beginning of the melt season to
be obtained, as well as to find if any threshold behaviour is appar-
ent. Weather data from PROMICE UPE U, with 2 m total of melt-
water input (over 5 days using Lake Ponting data from Tedesco
and others, 2012) was used to form a lake with conditions varied
upon lid formation to simulate the effect of precipitation and tem-
perature differences on lid formation from a common starting
point. Precipitation was multiplied by a factor ranging from
0 to 3 resulting in start of melt season snow depths between
0 and 3.45 m. Temperature from the day of lid formation to the
end of the model run was added to or subtracted to with a
range from +10 to −20◦C. Average temperature over this period
with default settings is −12.4◦C giving a range from −2.4 to
−32.4◦C. The maximum lid thickness before lid breakup (or at
298 days of lid coverage if no lid breakup occurs) was recorded
for a range of 25 inputs for precipitation and temperature giving
625 values in total.

Figure 5 shows that a change in snow cover between 0 and
3.9 m over winter while air temperature is constant results in a
greater range of ice lid thickness than a change in over-winter
temperature between +10 and −20◦C (0.8–2.5 m against
1.4–2.3 m). Lid thickness varies smoothly with a parameter
change with no threshold behaviour observed. Figure 5 also
shows that even under the most extreme conditions tested (no

snow cover and average winter temperatures of −32.4◦C) lid
thickness does not exceed 3.3 m. Koenig and others (2015) find
an average ice lid thickness of 1.4 m, with 0.65 m of snow
cover present using observations obtained through Operation
IceBridge. GlacierLake predicts lid thickness ranging from
1.7–2.7 m depending on temperature when snow cover at the
start of the melt season reaches 0.65 m Koenig and others (2015).
This translates to thinner lids (1.5–2.5 m) during April and May
when IceBridge flights are performed but suggests GlacierLake
may slightly over predict lid thickness.

Advection and basal freeze-up

Although GlacierLake does not have inbuilt allowance for advec-
tion, its effect was simulated by resetting ice temperature to its
initial value on the day of lid formation, effectively removing
the impact of warming earlier in the model run (Fig. 6). As sur-
face energy flux is effectively isolated from the base upon lid for-
mation this represents the earliest time in the model run where
near-surface temperatures are not atmospherically controlled
(e.g. cold wave in Fig. 6, left). A lower temperature limit of
−15◦C was chosen as limited near-surface ice temperature pro-
files of land terminating sectors of the GrIS show this to be at
the lower end of expected values (Meierbachtol and others,
2013). Figure 7 shows that including advection increases basal
freeze-up by at most 0.1 m compared to runs with no simulated
advection. Total basal freeze-up with an initial ice temperature
of −15◦C is limited to 0.5 or 0.6 m with simulated advection.
Altering the initial and advecting ice temperature made no dif-
ference to the magnitude of lid freezing (constant at 1.6 m
throughout the test).

Temperature change at depth

The assumption that the warming influence of supraglacial lakes
on underlying ice is not significant (Poinar and others, 2017) has
not been tested in the literature. We examine this by extending the

Fig. 4. Comparison of modelled lake bottom ablation to measured lake bottom abla-
tion data from Tedesco and others (2012). Dashed light grey is modelled basal ice
ablation excluding lake formation, black is measured lake bottom ablation. Jumps
in modelled ablation around day 175 result from threshold behaviour with cell
enthalpy near the slush-water boundary.

Fig. 5. Change in the maximum lid thickness with temperature and precipitation vari-
ation. Red vertical and horizontal lines indicate default UPE U conditions. White is
where lid formation malfunctioned within GlacierLake. White contours show 0.5 m
maximum thickness intervals.
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1 m deep cells at the bottom of the model to a total of 50 m
(Fig. 8) making a 60 m domain in total. The initial temperature
profile is set uniformly to −10◦C with weather data from
PROMICE station UPE-U (Fausto and van As, 2019). Figure 8
shows the lake exerts a strong influence (up to 8◦C) to around
10 m below the lake, however the warming effect beyond 15 m
below the lake is limited at less than 1◦C.

GlacierLake behaviour at UPE-U AWS

To test steady-state behaviour, and the general behaviour of
GlacierLake, it was run with PROMICE UPE-U data for
1000 days from 1st of January, 2010, repeating forcing data
year on year. Figure 9 shows that although the thermal impact
of a lake on underlying ice is limited beyond 15 m it is
sufficient to prompt faster lake formation the following melt
season. As annual melt exceeds annual refreezing, no steady
state arises.

Fig. 6. Simulated advection. Panels a and b: no alteration to ice temperature initially set at −10◦C. Panels c and d: a constant temperature of −10◦C was set
initially, and repeated upon lid formation. Basal freeze-up was 0.4 and 0.5 m respectively. White space in panels b and d is free space before meltwater inflow
input. Black line in panels a and c is snow depth, dashed blue line is water depth in snow layer.

Fig. 7. Total basal freeze-up whilst lid is present (stages 4–5) with and without simu-
lated advection. Whilst the trend is upwards, small decreases in basal freeze-up are
observed with and without advection included. This is a result of threshold behaviour
between slush, water and ice within cells where the temperature is at, or within
0.05◦C of 0◦C. For example a colder initial ice temperature may result in an increase
of three slush cells above the ice-slush boundary but a decrease of one ice cell. Refer
to Fig. 6 for test setup.

Fig. 8. Ice temperature at depth using AWS data from the PROMICE UPE-U weather
station, commencing 1st January 2010. Note the change in depth scale and jump
from absolute temperature to temperature change from day 0 between panels b
and c. Although the overall model domain extends to 60 m, only the upper 30 m
are shown here. Black line in panel a is snow depth, blue dashed line is water depth.

Journal of Glaciology 369



Discussion

Temperature change at depth and multi-year behaviour

Warming of ice beneath lakes (Fig. 8) may influence lake drainage
events on the GrIS as the fracture toughness of ice decreases with
warming ice (Liu and Miller, 1979), potentially lowering the stress
threshold for fracture propagation beneath lakes (Krawczynski
and others, 2009). However, further studies would be required
to accurately assess this possibility. Figure 9 shows no steady
state arises, consistent with melt rates of metres per year in
the ablation zone. This points to lake drainage by fracture or over-
topping being important controls in limiting the depth of lakes on
the GrIS, as has been previously observed (Tedesco and Fettweis,
2012) and also modelled (Banwell and others, 2012a). When bur-
ied, the lake top and bottom act as a 0◦C boundaries, for both the
underlying ice and the overlying ice lid. The consequence of this
on the ice lid is to prevent very cold mid-winter temperatures due
to an upward energy flux from latent heat of freezing of the water.
This, with colder temperatures at the top of the water profile, con-
tributes to lid freezing outpacing basal freeze-up.

I0 term

Figures 3 and 4 show that model sensitivity to the value of I0 is
large, suggesting it should tested before model use where possible.
The use of the I0 term has moved away from its initial model
implementation in Ebert and Curry (1993) who use I0 in the
Beer–Lambert law when calculating shortwave energy absorption
in ice with brine pockets. When a meltwater lake is present Ebert
and Curry (1993) instead use the equation

Fp = FSW ap + apait p + t p(1− ai)(1− I0)
[ ]

, (22)

where ap is the proportion of shortwave absorbed by the pond,
ai is bare ice albedo, tp is the pond transmissivity as a function

of depth and I0 is the fraction of shortwave to penetrate the ice.
They take an I0 value that varies with cloud cover, with a max-
imum value of 0.35 under cloudy skies and a minimum value of
0.18 under clear skies, following Grenfell and Maykut (1977).
This reflects the fact that there is more incoming radiation in
the infrared range under clear skies, most of which is absorbed
in the upper 10 cm of the ice profile (Grenfell and Maykut,
1977).

Lüthje and others (2006) deviate and take I0 as the proportion
of shortwave radiation that propagates below the surface water
layer, as does this model. Lüthje and others (2006) use 0.6 as
the value of I0 as Grenfell and Maykut (1977) find the fraction
of incident shortwave radiation above 700 nm (i.e. infrared) to
be 40% (in disagreement with Kirk, 1988 who suggests a value
of 50%). Their value of 0.6 is chosen as infrared radiation is
strongly absorbed by the top 0.5 m of the water (Kirk, 1988).
The calculation of Lüthje and others (2006) however, excludes
reflection from the bare ice surface so may result in an oversupply
of shortwave radiation to the upper ice layers beneath the lake.
Lüthje and others (2006) do not run sensitivity tests of the
I0 value and it is subsequently used in Tedesco and others (2012),
Buzzard and others (2018) and the sea-ice lake model of Scott and
Feltham (2010), without further testing.

The I0 term is important as it determines a proportion of
incoming shortwave radiation, FSW(1− I0), which will not be fac-
tored into the Beer–Lambert law and will therefore not be access-
ible to the underlying ice. The large sensitivity coefficients arises
as a greater I0 means a greater energy flux for the upper ice cells,
as shortwave infiltration is a faster transfer mechanism than tur-
bulent heat transfer and heat diffusion. In effect, the use of the I0
term here is equivalent to an original I0 value (as intended by
Ebert and Curry, 1993) of 1 (i.e. all shortwave radiation enters
the water column), with a certain fraction of light that penetrates
to the lake base reflected backwards. In light of these points, the I0
term in its form used here was adjusted to obtain the closest
match with measured basal ablation. Future models could

Fig. 9. Example model output including a short duration meltwater inflow input and snow cover, with data from PROMICE UPE-U AWS from 1st January 2010
repeating year-on-year for 1000 days. Panel a shows snow cover where black is snow depth and dashed blue is water depth. Panel b showsa lake temperature
profile. White space in panel b is free space before meltwater inflow input.
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re-incorporate the I0 definition of Ebert and Curry (1993) or take
note of the terms sensitivity. Discussion of the importance of the
I0 term in low melt/ablation bare ice is covered in Hoffman and
others (2014).

Conclusion

This study has presented the first model for the full multi-year
evolution of supraglacial lakes in the ablation zone of the GrIS.
GlacierLake can replicate field data for ablation and lake forma-
tion from Tedesco and others (2012) with lid thickness slightly
exceeding observations from Koenig and others (2015) when a
snow thickness of 0.65 m is used. GlacierLake shows that the
sum of the ice-lid thickness and basal freeze-up is unlikely to
exceed 3.9 m with no snow cover, or 2.8 m with 1 m of snow
cover at the end of the melt season. This represents an important
physically based confirmation of Koenig and others (2015), i.e.
that a large number of lakes can be expected to remain (at least
partially) unfrozen throughout the winter, with implications for
the development of the supraglacial hydrological system in the
following melt season due to a pre-existing water stores. The com-
putational efficiency of GlacierLake means it could be incorpo-
rated into a holistic model of Greenland supraglacial hydrology
without impeding run time, and that it could be easily used in
ice sheet-wide studies. GlacierLake could also be easily adapted
to valley glacier or ice-cap supraglacial lakes. Sensitivity testing
reveals the importance of the I0 (proportion of shortwave radi-
ation absorbed at the lake surface) term in determining energy
transfer to the base of the lake. The results presented here are
vital for better understanding the role of lakes for surrounding
ice temperatures and in forming surface-bed links through lake
hydrofracture. It is hoped that this study will provide an overall
better understanding of GrIS surface-melt processes; such pro-
cesses ultimately drive a significant and accelerating component
of global sea-level rise.

Code availability. Model code is available at: https://doi.org/10.17863/CAM.
47791.
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