4,931 research outputs found

    The hbar Expansion in Quantum Field Theory

    Full text link
    We show how expansions in powers of Planck's constant hbar = h/2\pi can give new insights into perturbative and nonperturbative properties of quantum field theories. Since hbar is a fundamental parameter, exact Lorentz invariance and gauge invariance are maintained at each order of the expansion. The physics of the hbar expansion depends on the scheme; i.e., different expansions are obtained depending on which quantities (momenta, couplings and masses) are assumed to be independent of hbar. We show that if the coupling and mass parameters appearing in the Lagrangian density are taken to be independent of hbar, then each loop in perturbation theory brings a factor of hbar. In the case of quantum electrodynamics, this scheme implies that the classical charge e, as well as the fine structure constant are linear in hbar. The connection between the number of loops and factors of hbar is more subtle for bound states since the binding energies and bound-state momenta themselves scale with hbar. The hbar expansion allows one to identify equal-time relativistic bound states in QED and QCD which are of lowest order in hbar and transform dynamically under Lorentz boosts. The possibility to use retarded propagators at the Born level gives valence-like wave-functions which implicitly describe the sea constituents of the bound states normally present in its Fock state representation.Comment: 8 pages, 1 figure. Version to be published in Phys. Rev.

    Application of ERTS-1 Imagery to Flood Inundation Mapping

    Get PDF
    Application of ERTS-1 imagery to flood inundation mapping in East and West Nishnabotna basins of southwestern Iow

    Evaluation of a ministry formation group for increasing laity intrinsic religious orientation

    Get PDF
    https://place.asburyseminary.edu/ecommonsatsdissertations/1592/thumbnail.jp

    Spatial propagation of excitonic coherence enables ratcheted energy transfer

    Full text link
    Experimental evidence shows that a variety of photosynthetic systems can preserve quantum beats in the process of electronic energy transfer, even at room temperature. However, whether this quantum coherence arises in vivo and whether it has any biological function have remained unclear. Here we present a theoretical model that suggests that the creation and recreation of coherence under natural conditions is ubiquitous. Our model allows us to theoretically demonstrate a mechanism for a ratchet effect enabled by quantum coherence, in a design inspired by an energy transfer pathway in the Fenna-Matthews-Olson complex of the green sulfur bacteria. This suggests a possible biological role for coherent oscillations in spatially directing energy transfer. Our results emphasize the importance of analyzing long-range energy transfer in terms of transfer between inter-complex coupling (ICC) states rather than between site or exciton states.Comment: Accepted version for Phys. Rev. E. 14 pages, 7 figure

    Photoluminescence and Terahertz Emission from Femtosecond Laser-Induced Plasma Channels

    Full text link
    Luminescence as a mechanism for terahertz emission from femtosecond laser-induced plasmas is studied. By using a fully microscopic theory, Coulomb scattering between electrons and ions is shown to lead to luminescence even for a spatially homogeneous plasma. The spectral features introduced by the rod geometry of laser-induced plasma channels in air are discussed on the basis of a generalized mode-function analysis.Comment: 4 pages with 2 figures

    Digital computer synthesis of admittance matrices of N+1 nodes

    Get PDF
    "March, 1967.
    • …
    corecore