2,323 research outputs found

    Dynamics of vegetation and soils of oak/saw palmetto scrub after fire: Observations from permanent transects

    Get PDF
    Ten permanent 15 m transects previously established in two oak/saw palmetto scrub stands burned in December 1986, while two transects remained unburned. Vegetation in the greater than 0.5 m and the less than 0.5 m layers on these transects was sampled at 6, 12, 18, 24, and 36 months postburn and determined structural features of the vegetation (height, percent bare ground, total cover). The vegetation data were analyzed from each sampling by height layer using detrended correspondence analysis ordination. Vegetation data for the greater than 0.5 m layer for the entire time sequence were combined and analyzed using detrended correspondence analysis ordination. Soils were sampled at 6, 12, 18, and 24 months postburn and analyzed for pH, conductivity, organic matter, exchangeable cations (Ca, Mg, K, Na), NO3-N, NH4-N, Al, available metals (Cu, Fe, Mn, Zn), and PO4-P. Shrub species recovered at different rates postfire with saw palmetto reestablishing cover greater than 0.5 m within one year, but the scrub oaks had not returned to preburn cover greater than 0.5 m in 3 years after the fire. These differences in growth rates resulted in dominance shifts after the fire with saw palmetto increasing relative to the scrub oaks. Overall changes in species richness were minor, although changes occurred in species richness by height layers due to different growth rates. Soils of well drained and poorly drained sites differed markedly. Soil responses to the fire appeared minor. Soil pH increased at 6 and 12 months postfire; calcium increased at 6 months postburn. Nitrate-nitrogen increased at 12 months postburn. Low values of conductivity, PO4-P, Mg, K, Na, and Fe at 12 months postburn may be related to heavy rainfall the preceding month. Seasonal variability in some soil parameters appeared to occur

    Geology, geohydrology, and soils of NASA, Kennedy Space Center: A review

    Get PDF
    Sediments underlying Kennedy Space Center (KSC) have accumulated in alternating periods of deposition and erosion since the Eocene. Surface sediments are of Pleistocene and Recent ages. Fluctuating sea levels with the alternating glacial-interglacial cycles have shaped the formation of the barrier island. Merritt Island is an older landscape whose formation may have begun as much as 240,000 years ago, although most of the surface sediments are not that old. Cape Canaveral probably dates from less than 7,000 years B.P. (before present) as does the barrier strip separating Mosquito Lagoon from the Atlantic Ocean. Merritt Island and Cape Canaveral have been shaped by progradational processes but not continuously so, while the Mosquito Lagoon barrier has been migrating landward. Deep acquifers beneath KSC are recharged inland but are highly mineralized in the coastal region and interact little with surface vegetation. The Surficial acquifer has formed in the Pleistocene and Recent deposits and is recharged by local rainfall. Sand ridges in the center of Merritt Island are important to its recharge

    Species biology and potential for controlling four exotic plants (Ammophila arenaria, Carpobrotus edulis, Cortaderia jubata and Gasoul crystallinum) on Vandenberg Air Force Base, California

    Get PDF
    Invasive exotic plants can displace native flora and modify community and ecosystem structure and function. Ammophila arenaria, Corpobrotus edulis, Cortaderia jubata, and Gasoul crystallinum are invasive plants present on Vandenberg Air Force Base, California, designated for study by the Environmental Task Force because of the perceived threat they represent to the native flora. Each plant's native habitat, how they came to be at Vandenberg, their propagation, and how they can be controlled is discussed

    Monitoring biological impacts of space shuttle launches from Vandenberg Air Force Base: Establishment of baseline conditions

    Get PDF
    Space shuttle launches produce environmental impacts resulting from the formation of an exhaust cloud containing hydrogen chloride aerosols and aluminum oxide particulates. Studies have shown that most impacts occur near-field (within 1.5 km) of the launch site while deposition from launches occurs far-field (as distant as 22 km). In order to establish baseline conditions of vegetation and soils in the areas likely to be impacted by shuttle launches from Vandenberg Air Force Base (VAFB), vegetation and soils in the vicinity of Space Launch Complex-6 (SLC-6) were sampled and a vegetation map prepared. The areas likely to be impacted by launches were determined considering the structure of the launch complex, the prevailing winds, the terrain, and predictions of the Rocket Exhaust Effluent Diffusion Model (REEDM). Fifty vegetation transects were established and sampled in March 1986 and resampled in September 1986. A vegetation map was prepared for six Master Planning maps surrounding SLC-6 using LANDSAT Thematic Mapper imagery as well as color and color infrared aerial photography. Soil samples were collected form the 0 to 7.5 cm layer at all transects in the wet season and at a subsample of the transects in the dry season and analyzed for pH, organic matter, conductivity, cation exchange capacity, exchangeable Ca, Mg, Na, K, and Al, available NH3-N, PO4-P, Cu, Fe, Mn, Zn, and TKN

    Effects of fire on composition, biomass, and nutrients in oak scrub vegetation on John F. Kennedy Space Center, Florida

    Get PDF
    Four stands of oak scrub two, four, eight, and 25 years since fire were sampled with permanent 15 m line transects. Percent cover by species was determined. Plant samples were analyzed for a variety of substances. Transects were resurveyed in 1985 for vegetation parameters. Nutrient pools in biomass were calculated from biomass data and tissue nutrient concentrations. Soil nutrient pools were calculated from nutrient concentrations and bulk density. Species distribution and soil chemical properties were found to be closely related to water table depth. The following fire-related conclusions are reached: (1) major structural changes occur in scrub after fire in that shrub height is reduced and requires four to six years to exceed 1 m; (2) reduction in shrub height affects the suitability of scrub for the Florida scrub jay (3) live biomass increases with time since fire; (4) nutrient concentrations in live biomass do not change with time since fire; (5) species composition and richness are little changed after fire; and (6) imposition of a continued regime of burning on a three-year cycle may have adverse impacts not indicated by the recovery of scrub from a single fire

    Resurfacing Old Roads

    Get PDF

    Review of the Work of the Division of Maintenance of the Indiana State Highway Commission

    Get PDF

    Construction Program Under Federal Public Works Administration

    Get PDF

    Radio Broadcast Over Purdue Station WBAA

    Get PDF

    New Developments in Road Maintenance

    Get PDF
    corecore