3,145 research outputs found

    On dynamical bit sequences

    Full text link
    Let X^{(k)}(t) = (X_1(t), ..., X_k(t)) denote a k-vector of i.i.d. random variables, each taking the values 1 or 0 with respective probabilities p and 1-p. As a process indexed by non-negative t, X(k)(t)X^{(k)}(t) is constructed--following Benjamini, Haggstrom, Peres, and Steif (2003)--so that it is strong Markov with invariant measure ((1-p)\delta_0+p\delta_1)^k. We derive sharp estimates for the probability that ``X_1(t)+...+X_k(t)=k-\ell for some t in F,'' where F \subset [0,1] is nonrandom and compact. We do this in two very different settings: (i) Where \ell is a constant; and (ii) Where \ell=k/2, k is even, and p=q=1/2. We prove that the probability is described by the Kolmogorov capacitance of F for case (i) and Howroyd's 1/2-dimensional box-dimension profiles for case (ii). We also present sample-path consequences, and a connection to capacities that answers a question of Benjamini et. al. (2003)Comment: 25 pages. This a substantial revision of an earlier paper. The material has been reorganized, and Theorem 1.3 is ne

    Vibrating soap films: An analog for quantum chaos on billiards

    Full text link
    We present an experimental setup based on the normal modes of vibrating soap films which shows quantum features of integrable and chaotic billiards. In particular, we obtain the so-called scars -narrow linear regions with high probability along classical periodic orbits- for the classically chaotic billiards. We show that these scars are also visible at low frequencies. Finally, we suggest some applications of our experimental setup in other related two-dimensional wave phenomena.Comment: 5 pages, 7 figures. Better Postscript figures available on reques

    Obtrusiveness of smartphone applications for sleep health

    Get PDF
    Unobtrusiveness is one of the main issues concerning health-related systems. Many developers affirm that their systems do not burden users; however, this is not always achieved. This article evaluates the obtrusiveness of various systems developed to improve sleep quality. The systems analyzed are related to sleep hygiene, since it has become an interesting topic for researchers, physicians and people in general, mainly because it has become part of the methods used to estimate a persons’ health status A set of design elements are presented as keys to achieving unobtrusiveness. We propose a scale to measure the level of unobtrusiveness and use it to evaluate several systems, with a focus on smartphone applications.

    Development of Pulse Position Modulation/Optical CDMA (PPM/O-CDMA) for Gb/s Fiber Optic Networking

    Get PDF
    Pulse position modulation (PPM) in lasercom systems is known to provide potential advantages over other modulation schemes. [1]. In PPM, a periodic time frame is established and data is transmitted by placing a pulse in any one of several subintervals (or ''slots'') within each frame. In PPM/O-CDMA all users use the same frame structure and each transmits its unique address code in place of the PPM pulse. The advantage of PPM as a pulsed signal format is that (1) a single pulse can transmit multiple bits during each frame; (2) decoding (determining which subinterval contains the pulse) is by comparison rather than threshold tests (as in on-off-keying); (3) each user transmits in only a small fraction of the frame, hence the multi-access interference (MAI) of any user statistically spreads over the entire frame time, reducing the chance of overlap with any other user; and (4) under an average power constraint, increasing frame time increases the peak pulse power (i.e., PPM trades average power for peak power). The most straightforward approach to implementing PPM/O-CDMA data modulator inserts the PPM pulse modulation first, then imposes the O-CDMA coding. A pulsed PPM modulator converts bits (words) into pulse positions. In the case of wavelength/time (W/T) matrix codes, multi-wavelength pulses are generated at the beginning of each frame, at the frame rate. For M-ary PPM, a block of k bits represents M = 2{sup k} unique interval positions in the frame corresponding to M-l specific time delays (the zero delay is also a position). PPM modulation is achieved by shifting the initial pulse into an interval position with delay D(i) (i=0,1,2,..,M-1). The location of a pulse position (selection of a delay) therefore identifies a unique k-bit word in the frame. At the receiver, determining which delay occurs relative to the frame start time decodes the data word. The probability of pulse overlap between two users decreases with M, which therefore decreases the probability of MAI buildup. Spreadsheet simulations suggest that a slot-synchronous M-ary PPM/O-CDMA system will support more concurrent users than a chip-synchronous or frame-synchronous system
    • 

    corecore