571 research outputs found

    On the solar origin of the signal at 220.7microHz: A possible component of a g mode?

    Full text link
    Gravity modes in the Sun have been the object of a long and difficult search in recent decades. Thanks to the data accumulated with the last generation of instruments (BiSON, GONG and three helioseismic instruments aboard SoHO), scientists have been able to find signatures of their presence. However, the individual detection of such modes remains evasive. In this article, we study the signal at 220.7 microHz which is a peak that is present in most of the helioseismic data of the last 10 years. This signal has already been identified as being one component of a g-mode candidate detected in the GOLF Doppler velocity signal. The nature of this peak is studied in particular using the VIRGO/SPM instrument aboard SoHO. First we analyse all the available instrumental data of VIRGO and SoHO (housekeeping) to reject any possible instrumental origin. No relation was found, implying that the signal has a solar origin. Using Monte Carlo simulations, we find, with more than 99% confidence level, that the signal found in VIRGO/SPM is very unlikely to be due to pure noise.Comment: Accepted for publication in ApJSS. 19 pages, 9 figure

    Polarization Profiles of Scattered Emission Lines. II. Upstream Dust Scattering in the HH 1 Jet

    Full text link
    Detailed comparisons are made between observations of scattered light upstream of the head of the HH~1 jet and predictions of simple scattering models. It is shown that, in order to unambiguously determine the velocity of the head of the jet (bow shock) with respect to the upstream dust, existing spectroscopic observations are insufficient and that spectropolarimetric observations of the scattered light are necessary. Such an independent measure of the bow shock velocity is important in order to test ``multiple outflow'' theories of Herbig-Haro jets. It is also shown 2that the scattering dust must have a very forward-throwing scattering phase function (\langle\cos\theta\rangle\msim 0.7) and slight evidence is found for a dust-gas ratio that is higher than average.Comment: 11 pages, uuencoded compressed postscript (including 9 figures), accepted for publication in Ap.J., IAUNAM_contrib.#34

    The Rotation Of The Deep Solar Layers

    Full text link
    From the analysis of low-order GOLF+MDI sectoral modes and LOWL data (l > 3), we derive the solar radial rotation profile assuming no latitudinal dependance in the solar core. These low-order acoustic modes contain the most statistically significant information about rotation of the deepest solar layers and should be least influenced by internal variability associated with the solar dynamo. After correction of the sectoral splittings for their contamination by the rotation of the higher latitudes, we obtain a flat rotation profile down to 0.2 solar radius.Comment: accepted in ApJ Letters 5 pages, 2 figure

    Pumping up the [N I] nebular lines

    Get PDF
    The optical [N I] doublet near 5200 {\AA} is anomalously strong in a variety of emission-line objects. We compute a detailed photoionization model and use it to show that pumping by far-ultraviolet (FUV) stellar radiation previously posited as a general explanation applies to the Orion Nebula (M42) and its companion M43; but, it is unlikely to explain planetary nebulae and supernova remnants. Our models establish that the observed nearly constant equivalent width of [N I] with respect to the dust-scattered stellar continuum depends primarily on three factors: the FUV to visual-band flux ratio of the stellar population; the optical properties of the dust; and the line broadening where the pumping occurs. In contrast, the intensity ratio [N I]/H{\beta} depends primarily on the FUV to extreme-ultraviolet ratio, which varies strongly with the spectral type of the exciting star. This is consistent with the observed difference of a factor of five between M42 and M43, which are excited by an O7 and B0.5 star respectively. We derive a non-thermal broadening of order 5 km/s for the [N I] pumping zone and show that the broadening mechanism must be different from the large-scale turbulent motions that have been suggested to explain the line-widths in this H II region. A mechanism is required that operates at scales of a few astronomical units, which may be driven by thermal instabilities of neutral gas in the range 1000 to 3000 K. In an appendix, we describe how collisional and radiative processes are treated in the detailed model N I atom now included in the Cloudy plasma code.Comment: ApJ in press. 8 pages of main paper plus 11 pages of appendices, with 13 figures and 12 table

    Rotationally Warm Molecular Hydrogen in the Orion Bar

    Get PDF
    The Orion Bar is one of the nearest and best-studied photodissociation or photon-dominated regions (PDRs). Observations reveal the presence of H2 lines from vibrationally or rotationally excited upper levels that suggest warm gas temperatures (400 to 700 K). However, standard models of PDRs are unable to reproduce such warm rotational temperatures. In this paper we attempt to explain these observations with new comprehensive models which extend from the H+ region through the Bar and include the magnetic field in the equation of state. We adopt the model parameters from our previous paper which successfully reproduced a wide variety of spectral observations across the Bar. In this model the local cosmic-ray density is enhanced above the galactic background, as is the magnetic field, and which increases the cosmic-ray heating elevating the temperature in the molecular region. The pressure is further enhanced above the gas pressure in the H+ region by the momentum transferred from the absorbed starlight. Here we investigate whether the observed H2 lines can be reproduced with standard assumptions concerning the grain photoelectric emission. We also explore the effects due to the inclusion of recently computed H2 + H2, H2 + H and H2 + He collisional rate coefficients.Comment: Accepted for publication in ApJ (34 pages, including 16 figures

    Determination of the Physical Conditions of the Knots in the Helix Nebula from Optical and Infrared Observations

    Get PDF
    [Abridged] We use new HST and archived images to clarify the nature of the knots in the Helix Nebula. We employ published far infrared spectrophotometry and existing 2.12 micron images to establish that the population distribution of the lowest ro-vibrational states of H2 is close to the distribution of a gas in LTE at 988 +- 119 K. We derive a total flux from the nebula in H2 lines and compare this with the power available from the central star for producing this radiation. We establish that neither soft X-rays nor FUV radiation has enough energy to power the H2 radiation, only the stellar EUV radiation shortward of 912 Angstrom does. Advection of material from the cold regions of the knots produces an extensive zone where both atomic and molecular hydrogen are found, allowing the H2 to directly be heated by Lyman continuum radiation, thus providing a mechanism that can explain the excitation temperature and surface brightness of the cusps and tails. New images of the knot 378-801 reveal that the 2.12 micron cusp and tail lie immediately inside the ionized atomic gas zone. This firmly establishes that the "tail" structure is an ionization bounded radiation shadow behind the optically thick core of the knot. A unique new image in the HeII 4686 Angstrom line fails to show any emission from knots that might have been found in the He++ core of the nebula. We also re-examined high signal-to-noise ratio ground-based telescope images of this same inner region and found no evidence of structures that could be related to knots.Comment: Astronomical Journal, in press. Some figures are shown at reduced resolution. A full resolution version is available at http://www.ifront.org/wiki/Helix_Nebula_2007_Pape

    Evidence for polar jets as precursors of polar plume formation

    Full text link
    Observations from the Hinode/XRT telescope and STEREO/SECCHI/EUVI are utilized to study polar coronal jets and plumes. The study focuses on the temporal evolution of both structures and their relationship. The data sample, spanning April 7-8 2007, shows that over 90% of the 28 observed jet events are associated with polar plumes. EUV images (STEREO/SECCHI) show plume haze rising from the location of approximately 70% of the polar X-ray (Hinode/XRT) and EUV jets, with the plume haze appearing minutes to hours after the jet was observed. The remaining jets occurred in areas where plume material previously existed causing a brightness enhancement of the latter after the jet event. Short-lived, jet-like events and small transient bright points are seen (one at a time) at different locations within the base of pre-existing long-lived plumes. X-ray images also show instances (at least two events) of collimated-thin jets rapidly evolving into significantly wider plume-like structures that are followed by the delayed appearance of plume haze in the EUV. These observations provide evidence that X-ray jets are precursors of polar plumes, and in some cases cause brightenings of plumes. Possible mechanisms to explain the observed jet and plume relationship are discussed.Comment: 10 pages, 4 figures, accepted as APJ Lette
    • …
    corecore