1,021 research outputs found

    Oblique propagation of solitary electrostatic waves in magnetized plasmas with cold ions and nonthermal electrons

    Get PDF
    Oblique propagation of large amplitude electrostatic waves and solitary structures is investigated in magnetized plasmas, comprising cold fluid ions and Cairns nonthermally distributed electrons, by using a Sagdeev pseudopotential formalism. To perform the analysis, quasineutrality is assumed, so that in normalized variables the electrostatic potential and the occurrence of solitary structures are governed by three parameters: the Mach number M, the typical Cairns parameter beta, and the angle theta between the directions of propagation and the static magnetic field. Below a critical beta, only positive compressive solitons are possible, and their amplitudes increase with increasing beta, M, and theta. Above the critical b, there is coexistence between negative rarefactive and positive compressive solitons, and the range of negative solitons, at increasing M, ends upon encountering a double layer or a singularity. The double layer amplitudes (in absolute value) increase with beta but are independent of theta. Roots of the Sagdeev pseudopotential beyond the double layer are not accessible from the undisturbed conditions, because of an intervening singularity where the pseudopotential becomes infinite. Recent claims of finding supersolitons beyond a double layer appear to be based on a misinterpretation of the nature of the singularity

    Head-on collisions of electrostatic solitons in nonthermal plasmas

    Get PDF
    In contrast to overtaking interactions, head-on collisions between two electrostatic solitons can only be dealt with by an approximate method, which limits the range of validity but offers valuable insights. Treatments in the plasma physics literature all use assumptions in the stretching of space and time and in the expansion of the dependent variables that are seldom if ever discussed. All models force a separability to lowest order, corresponding to two linear waves with opposite but equally large velocities. A systematic exposition of the underlying hypotheses is illustrated by considering a plasma composed of cold ions and nonthermal electrons. This is general enough to yield critical compositions that lead to modified rather than standard Korteweg-de Vries equations, an aspect not discussed so far. The nonlinear evolution equations for both solitons and their phase shifts due to the collision are established. A Korteweg-de Vries description is the generic conclusion, except when the plasma composition is critical, rendering the nonlinearity in the evolution equations cubic, with concomitant repercussions on the phase shifts. In the latter case, the solitons can have either polarity, so that combinations of negative and positive solitons can occur, contrary to the generic case, where both solitons necessarily have the same polarity

    Large-amplitude electron-acoustic solitons in a dusty plasma with kappa-distributed electrons

    Full text link
    The Sagdeev pseudopotential method is used to investigate the occurrence and the dynamics of fully nonlinear electrostatic solitary structures in a plasma containing suprathermal hot electrons, in the presence of massive charged dust particles in the background. The soliton existence domain is delineated, and its parametric dependence on different physical parameters is clarified.Comment: 3 pages, 1 figure, presented as a poster at the 6th International Conference on the Physics of Dusty Plasmas (ICPDP6), Garmisch-Partenkirchen, Germany, 201

    The Effects of Symmetries on Quantum Fidelity Decay

    Full text link
    We explore the effect of a system's symmetries on fidelity decay behavior. Chaos-like exponential fidelity decay behavior occurs in non-chaotic systems when the system possesses symmetries and the applied perturbation is not tied to a classical parameter. Similar systems without symmetries exhibit faster-than-exponential decay under the same type of perturbation. This counter-intuitive result, that extra symmetries cause the system to behave in a chaotic fashion, may have important ramifications for quantum error correction.Comment: 5 pages, 3 figures, to be published Phys. Rev. E Rapid Communicatio

    Hole-pair hopping in arrangements of hole-rich/hole-poor domains in a quantum antiferromagnet

    Full text link
    We study the motion of holes in a doped quantum antiferromagnet in the presence of arrangements of hole-rich and hole-poor domains such as the stripe-phase in high-TCT_C cuprates. When these structures form, it becomes energetically favorable for single holes, pairs of holes or small bound-hole clusters to hop from one hole-rich domain to another due to quantum fluctuations. However, we find that at temperature of approximately 100 K, the probability for bound hole-pair exchange between neighboring hole-rich regions in the stripe phase, is one or two orders of magnitude larger than single-hole or multi-hole droplet exchange. As a result holes in a given hole-rich domain penetrate further into the antiferromagnetically aligned domains when they do it in pairs. At temperature of about 100 K and below bound pairs of holes hop from one hole-rich domain to another with high probability. Therefore our main finding is that the presence of the antiferromagnetic hole-poor domains act as a filter which selects, from the hole-rich domains (where holes form a self-bound liquid), hole pairs which can be exchanged throughout the system. This fluid of bound hole pairs can undergo a superfluid phase ordering at the above mentioned temperature scale.Comment: Revtex, 6 two-column pages, 4 figure

    Spectrum and Thermodynamics of the one-dimensional supersymmetric t-J model with 1/r21/r^2 exchange and hopping

    Get PDF
    We derive the spectrum and the thermodynamics of the one-dimensional supersymmetric t-J model with long range hopping and spin exchange using a set of maximal-spin eigenstates. This spectrum confirms the recent conjecture that the asymptotic Bethe-ansatz spectrum is exact. By empirical determining the spinon degeneracies of each state, we are able to explicitly construct the free energy.Comment: 13 pages, Latex, (published in PRB46, 6639 (1992)

    Quantum Fidelity Decay of Quasi-Integrable Systems

    Full text link
    We show, via numerical simulations, that the fidelity decay behavior of quasi-integrable systems is strongly dependent on the location of the initial coherent state with respect to the underlying classical phase space. In parallel to classical fidelity, the quantum fidelity generally exhibits Gaussian decay when the perturbation affects the frequency of periodic phase space orbits and power-law decay when the perturbation changes the shape of the orbits. For both behaviors the decay rate also depends on initial state location. The spectrum of the initial states in the eigenbasis of the system reflects the different fidelity decay behaviors. In addition, states with initial Gaussian decay exhibit a stage of exponential decay for strong perturbations. This elicits a surprising phenomenon: a strong perturbation can induce a higher fidelity than a weak perturbation of the same type.Comment: 11 pages, 11 figures, to be published Phys. Rev.

    Luttinger Liquid Instability in the One Dimensional t-J Model

    Full text link
    We study the t-J model in one dimension by numerically projecting the true ground state from a Luttinger liquid trial wave function. We find the model exhibits Luttinger liquid behavior for most of the phase diagram in which interaction strength and density are varied. However at small densities and high interaction strengths a new phase with a gap to spin excitations and enhanced superconducting correlations is found. We show this phase is a Luther-Emery liquid and study its correlation functions.Comment: REVTEX, 11 pages. 4 Figures available on request from [email protected]
    • …
    corecore