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The explicit construction of low dimensional models with Jastrow ground-state wave-

functions has attracted considerable recent interest [1–6]. In one dimension, Shastry and

Haldane [5,6] have demonstrated that the ground-state of the 1D Heisenberg model with a

1/r2 exchange interaction is a Gutzwiller state for the half filled infinite-U Hubbard model.

Haldane has shown how the spectrum of this model can be written in terms of a generalized

type of Jastrow wavefunction with excitations of novel statistics [7].

Kuramoto and Yokoyama [8] have recently extended these results to include holes,

demonstrating that the corresponding 1D supersymmetric t-J model is also characterized

by a Gutzwiller ground-state. Most recently, Kawakami has obtained an asymptotic Bethe-

ansatz (ABA) solution for the model, based on the observation that the ground-state wave-

function is a product of two-body functions [9]. Assuming factorizability, he derived the

spectrum of the system, which was conjectured to be exact. The low-energy critical be-

havior of the model has been identified as a Luttinger liquid [10,11]; the spin and charge

excitations are described independently by c = 1 conformal field theories.

In the case of the 1/r2 Bose gas [12], and the Shastry-Haldane 1/r2 Heisenberg chain [7],

the ABA has been shown to furnish the correct spectrum, despite the long-range nature of

the interactions. A remarkable feature of these models is that excited states are obtained

from the ground-state by introducing zeros into the Jastrow wavefunction, in a manner

reminiscent of Laughlin’s description of quasiparticles in the fractional quantum Hall effect.

This motivates us to examine the 1/r2 supersymmetric t-J model in a similar vein. Here,

we show how this philosophy can be used to construct the excited state Jastrow wavefunc-

tions of the 1/r2 supersymmetric t-J model and indeed, the spectrum confirms Kawakami’s

conjecture. In addition to the spectrum, we are able to obtain the spin degeneracies of each

state, permitting us to write the the free energy in closed form.

The Hamiltonian for the one-dimensional t-J model is given by

H =
∑

i 6=j,σ

[

−tijc
†
iσcjσ

]

+
∑

i 6=j

[

Jij(Si · Sj −
1
4
ninj)

]

, (1)

where we implicitly project out any double occupancies. We take tij = Jij = t/d2(i−j) where
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d(n) = N
π
sin(nπ/N) is the chord distance consistent with periodic boundary conditions on

N lattice sites [13].

States in the Hilbert space can be represented by spin and hole excitations from the

fully-polarized up-spin state |P 〉 [14]. If we let Q denote the number of holes and M denote

the number of down-spins, then Sz is given by Sz = (N −Q)/2−M . The wavefunctions are

given by

|ψ〉 =
∑

x,y

ψ(x, y)
∏

α

S−
xα

∏

i

h†yi|P 〉, (2)

where the amplitude ψ(x, y) is symmetric in x ≡ (x1, x2, . . . , xM), the positions of the down-

spins, and antisymmetric in y ≡ (y1, y2, . . . , yQ), the positions of the holes. S−
xα

= c†xα↓
cxα↑

is the spin-lowering operator at site xα and h†yi = cyi↑ creates a hole at site yi.

We can construct a general class of states corresponding to states of uniform motion

and spin polarization. To describe these states, we generalize Kuramoto and Yokoyama’s

Jastrow ground-state [8] as follows

ψG(x, y; Js, Jh) = exp

[

2πi

N

(

Js
∑

α

xα + Jh
∑

i

yi

)]

Ψ0(x, y)

Ψ0(x, y) =
∏

α<β

d2(xα − xβ)
∏

i<j

d(yi − yj)
∏

α,i

d(xα − yi). (3)

Here, Js and Jh govern the (uniform) momenta of down-spins and holes respectively. Js and

Jh take on either integral or half-integral values as appropriate to insure that ψG has the

correct periodicities under xα → xα +N and yi → yi +N .

The Hamiltonian can be broken up into four parts, H = T ↑ + T ↓ +H0 +H int, where T ↑

(T ↓) is the up (down) spin transfer operator, H0 is the spin exchange operator and H int is

the diagonal interaction term. When H acts on ψG, T
↑ only affects the y variables and H0

only affects the x variables. As a result, these operators are easy to treat and yield only two

and three body terms when appropriate conditions on Js and Jh are met [5,6,8].

However, because T ↓ exchanges pairs of xα and yi, this term must be treated differently.

In general, it is not true that T ↑|ψG〉 = T ↓|ψG〉 because T
↑ does not commute with the spin

raising operator. This difficulty was overlooked in earlier work [8]. To deal with T ↓, we use
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an alternate representation for |ψG〉 in terms of up-spins and holes. Let us introduce the

N −M − Q coordinates u ≡ (u1, u2, . . . , uN−M−Q) which give the location of the up-spins.

Wavefunctions in this representation are given by the spin rotated version of Eq. (2) where

the x are replaced by u and M is replaced by N −M −Q. Making this transformation, we

find

ψG(x, y; Js, Jh) = AψG(u, y;N − Js, Jh − Js +
N

2
), (4)

where the set of N coordinates (x, y, u) exhausts the entire lattice. A is a constant indepen-

dent of the spin and hole coordinates. Using this identity, the down-spin transfer operator

gives

T ↓ψG(x, y)

ψG(x, y)
=
T ↓ψG(u, y)

ψG(u, y)
, (5)

and can thus be treated in a similar manner as T ↑. The result gives two and three body

terms in the variables u and y. These terms can then be converted into sums over the x and

y variables by making use of the fact that (x, y, u) runs over the entire lattice.

When the separate terms that contribute to the Hamiltonian are combined, we find that

the two body terms drop out and the three body terms combine to give constants. As a

result, ψG with total momentum P = 2π
N
(JsM+JhQ) is an exact eigenstate ofH with energy

N2

π2t
E =

2

3
M(M2 − 1)− 2MJs(N − Js)

+Q
[

1

3
(N2 − 1) +

2

3
(Q2 − 1) +

1

2
(M +Q)(2M −Q)

−2Jh(N − Jh) + 2(Js − Jh)
2
]

. (6)

The cancellation of the many body terms, and thus this result, is only valid under the

conditions |Js − N/2| ≤ N/2 − (M − 1 + Q/2), |Jh − N/2| ≤ N/2 − (M + Q − 1)/2 and

|Jh − Js| ≤ (M + 1)/2. For a given Sz, the minimum energy is given when Js and Jh

are as close to N/2 as possible. The ground state is given when Sz is either 0 or 1/2

and is a singlet whenever possible [8]. When Q = 0 this reduces to the result for the

Heisenberg chain [5,6]. These energy levels have also been found by Ha and Haldane [15],
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where J↑ = Jh − N + (M + Q + 1)/2 and J↓ = Jh − Js − (M − 1)/2. From these energy

levels we find the spin and charge velocities to be identical to the previous results [8,15].

To investigate the other excited states of the system, we introduce zeros into the

wavefunction by premultiplying it with polynomials of Xα = exp(2πixα/N) and Yi =

exp(2πiyi/N). The wavefunctions thus take the following modified Kalmeyer-Laughlin form

[16]:

ψ(x, y) = Φs(X, Y )Φh(Y )Ψ0, (7)

where Φs and Φh are completely symmetric under pairwise interchange of their arguments.

These states will be termed “fully-polarized spinon states”. Loosely speaking, the polynomi-

als Φs and Φh can be regarded as spin and charge quasiparticle wavefunctions respectively.

When the Hamiltonian acts on this wavefunction, once again all three-body terms com-

bine to give constants. However, in this case, some two-body terms remain and we are left

with the eigenvalue equation

N2

π2t
EΦsΦh = E0ΦsΦh +H1 +H2 +H3, (8)

where

H1 = 2Φh





∑

µ

∂2µ +
∑

µ<ν

Wµ +Wν

Wµ −Wν

(∂µ − ∂ν)



Φs

+4Φs





∑

i

∂2i +
1

2

∑

i<j

Yi + Yj
Yi − Yj

(∂i − ∂j)



Φh

H2 = 4
∑

i

∂iΦs∂iΦh

H3 = 2Φh

∑

α<β

Xα +Xβ

Xα −Xβ
(∂α − ∂β)Φs. (9)

Here we denote W ≡ (X, Y ) ≡ (X1 . . .XM , Y1 . . . YQ+M) and ∂µ ≡ Wµ∂/∂Wµ. In deriving

this, we have shifted Φs by the ground state configuration,
∏

µW
N/2
µ . As a result, E0 is

given by Eq. (6) with Js = Jh = N/2. We require that |degreeΦs| ≤ N/2− (M − 1 +Q/2),

|degree ΦsΦh| ≤ N/2 − (M + Q − 1)/2 and |degree Φh| ≤ (M + 1)/2, which is to hold for

each variable Xα or Yi independently.
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The first term, H1, does not mix Φs and Φh and has been solved by Sutherland [12].

However, H2 mixes Φs and Φh and H3 does not act symmetrically on Φs. As a result, they

are harder to deal with. We follow Sutherland and start by choosing the following symmetric

basis functions:

Φs(W ; {n}) =
∑

{Pµ}

∏

µ

W
nPµ
µ

Φh(Y ; {m}) =
∑

{Pi}

∏

i

Y
mPi

i , (10)

where the quantum numbers {n1, . . . , nM+Q} and {m1, . . . , mQ} are taken to be in increasing

order and {Pµ} and {Pi} denote permutations of the indices. These quantum numbers are

integral or half-integral as required by periodic boundary conditions.

In this basis, labeled by the two sets of quantum numbers {nµ} and {mi}, the Hamilto-

nian, considered as a matrix, can be shown to be upper-triangular. Eigenvalues are found

by reading the diagonal-elements labeled in terms of the quantum numbers {nµ} and {mi}

[17]. The result simplifies when written in terms of a conjugate set of quantum numbers

{J1, J2, . . . , JM+Q} and {I1, I2, . . . , IQ} defined by

Jµ = nµ + n0
µ n0

µ =
1

2
(2µ− (M +Q)− 1)

Ii = mi +m0
i m0

i =
1

2
(2i−Q− 1), (11)

where {nµ} and {mi} must satisfy the conditions specified before. This translates into the

conditions |Jµ| ≤ (N −M + 1)/2 and |Ii| ≤ (M +Q)/2. The energy is

E

t
=
π2

3
Q(1−

1

N2
) +

1

2

M+Q
∑

µ=1

(p2µ − π2), (12)

where the pseudomomenta, pµ, are given by the following equations:

pµN = 2πJµ − π
Q
∑

i=1

sgn(pµ − qi) + π
M+Q
∑

ν=1

sgn(pµ − pν)

2πIi = π
M+Q
∑

µ=1

sgn(qi − pµ). (13)

The above equations correspond to the asymptotic Bethe-ansatz equations obtained by

Kawakami [9]. Our result thus confirms that the ABA spectrum is exact.
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Here the resulting {pµ} and {qi} must lie between −π and π. The set of M +Q distinct

quantum numbers Jµ is in ascending order and governs the spin excitations. We restrict

them to take values in the range [−(N −M − 1)/2, (N −M − 1)/2] to guarantee that they

generate fully spin-polarized states. There are N −M values in this range, of which M +Q

are occupied and 2Sz are empty. A spin configuration can be represented by a sequence of

N−M digits such as {S} = (0111001011)s, where 1 represents an occupied quantum number

and 0 an unoccupied quantum number. These empty values are identified as spinons [7];

a sequence of 2jr consecutive zeros corresponds to a symmetric bound-state of 2jr spinons,

thereby creating an excitation of spin jr with spin degeneracy 2jr + 1. On these physical

grounds, we anticipate a spin degeneracy in the thermodynamic limit given by

wS =
∏

j

(2j + 1)n(j) (14)

where n(j) is the number of sequences of zeros of length 2j. The set of Q distinct quantum

numbers Ii, in ascending order and taking values in the range [−(M + Q)/2, (M + Q)/2],

governs charge excitations.

To complete the study of the model and confirm our interpretation of the quasiparticle

degeneracies, we looked at exact diagonalization of small systems (N ≤ 10 with holes). As

an example, the low-lying states of the N = 10, Q = 2 model is shown in Fig. 1. We

summarize the numerical result as follows:

1. The spectrum described in terms of the real pseudomomenta {pµ} and {qi} span the

full set of energy levels of the system.

2. The real pseudomomentum states are all highest weight states when {pµ} 6= ±π.

3. The spin degeneracy rule is obeyed for all internal sequences of zeros.

Certain small corrections to the spin degeneracy rule apply when there are zeros at either

end of {S} which we shall not enumerate here, and which are not important in the thermo-

dynamic limit [17].
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Finally, we may use the spectrum generated by the “fully-polarized spinon states” and

the supermultiplicity rule to obtain the free energy of the model in the thermodynamic

limit. Besides the “particle-state” solutions of equations (12) and (13), we have to take into

account the “hole-state” solutions [18]. At thermal equilibrium, the distribution functions

of these solutions are determined by minimizing the free energy functional [19,20], F =

E − TS − µ(N −Q), with the constraint that each “fully-polarized spinon state” described

by quantum numbers {Jµ} and {Ii} is associated with a spin degeneracy wS as given in

(14), where µ is the chemical potential. Following the standard methods of Takahashi [19],

minimizing the free energy for a given quantum number distribution gives the following free

energy

F (T )/N = −µ−
T

2π

∫ π

−π
dp ln

[

1 + e−βǫs(p)
]

, (15)

where ǫs is determined by the coupled equations

2ǫs(p) = ǫ0(p)− 2a− T ln
[

1 + e−βǫc(p)
]

ǫc(q) = 2a− T ln
[

1 + e−βǫs(q)
]

. (16)

Here ǫ0(p) = 1
2
t(p2 − π2

3
) + µ and a = 1

6
tπ2 + 1

2
µ. In the limit of half filling, µ → ∞,

ǫs → t(p2 − π2)/4, and the free energy reverts to the form obtained by Haldane for the

corresponding Heisenberg model [7,21]. For general µ, elimination of ǫc(p) yields the result

ǫs(p) = ǫo(p)− T ln

[

1

2
+
(

1

4
+ 2eβ(ǫ0(p)+a) cosh(βa)

)1/2
]

, (17)

We have verified that high temperature expansion of this free energy in powers of β correctly

reproduces the first two non-trivial terms in the high temperature perturbation theory.

From the free energy, it is not clear whether we may make a unique identification of the

statistics of the spin and charge excitations. We note that the S = 1/2 spinon excitations

always combine into a state with a symmetric spin wavefunction, thus 2S spinons form a

state with total spin S. In the limit of zero doping, the free energy is that of spinless fermions

[7,21]. We can equally well regard the spinon excitations as S = 1/2 fermions in a state with
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a fully antisymmetric spatial wavefunction; or alternatively, as hardcore S = 1/2 bosons in

a fully symmetric spatial state.

In summary, we have derived the spectrum of the 1D t-J model with 1/r2 long-range

exchange and hopping by the introduction of zeros into Jastrow ground-state wavefunctions.

Our solution confirms Kawakami’s conjecture that the ABA provides the exact spectrum,

suggesting that despite the long-range nature of the interactions, two-body scattering domi-

nates the long-wavelength physics. By interpreting multiple occupancy of momentum states

in the spinon wavefunction as symmetric bound-complexes of spinons, we have been able to

determine the degeneracies of the states needed to construct the free energy. Further work

is required to determine the integrability conditions of this model. There are also several

possible generalizations: most notably, SU(N) generalizations and the appealing possibility

of Jastrow-integrable impurity models.
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FIGURES

FIG. 1. Low-lying energy levels of the 10 site 2 hole system from exact diagonalization. The

numbers associated with each state list the spin degeneracies starting with spin 0 on the left. For

example, the number “331” indicates that we have 3 states with S = 0, 3 states with S = 1 and 1

state with S = 2.
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