674 research outputs found

    Optimal and efficient crossover designs for comparing test treatments with a control treatment

    Full text link
    This paper deals exclusively with crossover designs for the purpose of comparing t test treatments with a control treatment when the number of periods is no larger than t+1. Among other results it specifies sufficient conditions for a crossover design to be simultaneously A-optimal and MV-optimal in a very large and appealing class of crossover designs. It is expected that these optimal designs are highly efficient in the entire class of crossover designs. Some computationally useful tools are given and used to build assorted small optimal and efficient crossover designs. The model robustness of these newly discovered crossover designs is discussed.Comment: Published at http://dx.doi.org/10.1214/009053604000000887 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A generalization of sum composition: Self orthogonal Latin square design with sub self orthogonal Latin square designs

    Get PDF
    AbstractA generalization of the theory of sum composition of Latin square designs is given. Via this generalized theory it is shown that a self orthogonal Latin square design of order (3pα − 1)2 with a subself orthogonal Latin square design of order (pα − 1)2 can be constructed for any prime p > 2 and any positive integer α as long as p ≠ 3, 5, 7 and 13 if α = 1. Additional results concerning sets of orthogonal Latin square designs are also provided

    Efficient decoupling schemes with bounded controls based on Eulerian orthogonal arrays

    Get PDF
    The task of decoupling, i.e., removing unwanted interactions in a system Hamiltonian and/or couplings with an environment (decoherence), plays an important role in controlling quantum systems. There are many efficient decoupling schemes based on combinatorial concepts like orthogonal arrays, difference schemes and Hadamard matrices. So far these (combinatorial) decoupling schemes have relied on the ability to effect sequences of instantaneous, arbitrarily strong control Hamiltonians (bang-bang controls). To overcome the shortcomings of bang-bang control Viola and Knill proposed a method called Eulerian decoupling that allows the use of bounded-strength controls for decoupling. However, their method was not directly designed to take advantage of the composite structure of multipartite quantum systems. In this paper we define a combinatorial structure called an Eulerian orthogonal array. It merges the desirable properties of orthogonal arrays and Eulerian cycles in Cayley graphs (that are the basis of Eulerian decoupling). We show that this structure gives rise to decoupling schemes with bounded-strength control Hamiltonians that can be applied to composite quantum systems with few body Hamiltonians and special couplings with the environment. Furthermore, we show how to construct Eulerian orthogonal arrays having good parameters in order to obtain efficient decoupling schemes.Comment: 8 pages, revte

    Use of Generalized Fluid System Simulation Program (GFSSP) for Teaching and Performing Senior Design Projects at the Educational Institutions

    Get PDF
    This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA Marshall Space Flight Center (MSFC) as a general fluid flow system solver capable of handling phase changes, compressibility, mixture thermodynamics and transient operations. It also includes the capability to model external body forces such as gravity and centrifugal effects in a complex flow network. The objectives of GFSSP development are: a) to develop a robust and efficient numerical algorithm to solve a system of equations describing a flow network containing phase changes, mixing, and rotation; and b) to implement the algorithm in a structured, easy-to-use computer program. The analysis of thermofluid dynamics in a complex network requires resolution of the system into fluid nodes and branches, and solid nodes and conductors as shown in Figure 1. Figure 1 shows a schematic and GFSSP flow circuit of a counter-flow heat exchanger. Hot nitrogen gas is flowing through a pipe, colder nitrogen is flowing counter to the hot stream in the annulus pipe and heat transfer occurs through metal tubes. The problem considered is to calculate flowrates and temperature distributions in both streams. GFSSP has a unique data structure, as shown in Figure 2, that allows constructing all possible arrangements of a flow network with no limit on the number of elements. The elements of a flow network are boundary nodes where pressure and temperature are specified, internal nodes where pressure and temperature are calculated, and branches where flowrates are calculated. For conjugate heat transfer problems, there are three additional elements: solid node, ambient node, and conductor. The solid and fluid nodes are connected with solid-fluid conductors. GFSSP solves the conservation equations of mass and energy, and equation of state in internal nodes to calculate pressure, temperature and resident mass. The momentum conservation equation is solved in branches to calculate flowrate. It also solves for energy conservation equations to calculate temperatures of solid nodes. The equations are coupled and nonlinear; therefore, they are solved by an iterative numerical scheme. GFSSP employs a unique numerical scheme known as simultaneous adjustment with successive substitution (SASS), which is a combination of Newton-Raphson and successive substitution methods. The mass and momentum conservation equations and the equation of state are solved by the Newton-Raphson method while the conservation of energy and species are solved by the successive substitution method. GFSSP is linked with two thermodynamic property programs, GASP2 and WASP3 and GASPAK4, that provide thermodynamic and thermophysical properties of selected fluids. Both programs cover a range of pressure and temperature that allows fluid properties to be evaluated for liquid, liquid-vapor (saturation), and vapor region. GASP and WASP provide properties of 12 fluids. GASPAK includes a library of 36 fluids. GFSSP has three major parts. The first part is the graphical user interface (GUI), visual thermofluid analyzer of systems and components (VTASC). VTASC allows users to create a flow circuit by a 'point and click' paradigm. It creates the GFSSP input file after the completion of the model building process. GFSSP's GUI provides the users a platform to build and run their models. It also allows post-processing of results. The network flow circuit is first built using three basic elements: boundary node, internal node, and branch

    Locally D-optimal designs based on a class of composed models resulted from blending Emax and one-compartment models

    Full text link
    A class of nonlinear models combining a pharmacokinetic compartmental model and a pharmacodynamic Emax model is introduced. The locally D-optimal (LD) design for a four-parameter composed model is found to be a saturated four-point uniform LD design with the two boundary points of the design space in the LD design support. For a five-parameter composed model, a sufficient condition for the LD design to require the minimum number of sampling time points is derived. Robust LD designs are also investigated for both models. It is found that an LD design with kk parameters is equivalent to an LD design with k−1k-1 parameters if the linear parameter in the two composed models is a nuisance parameter. Assorted examples of LD designs are presented.Comment: Published in at http://dx.doi.org/10.1214/009053607000000776 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Controlling quantum systems by embedded dynamical decoupling schemes

    Full text link
    A dynamical decoupling method is presented which is based on embedding a deterministic decoupling scheme into a stochastic one. This way it is possible to combine the advantages of both methods and to increase the suppression of undesired perturbations of quantum systems significantly even for long interaction times. As a first application the stabilization of a quantum memory is discussed which is perturbed by one-and two-qubit interactions

    Use of Generalized Fluid System Simulation Program (GFSSP) for Teaching and Performing Senior Design Projects at the Educational Institutions

    Get PDF
    This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects
    • …
    corecore