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A generalization of the theory of sum composition of Latin square designs is 
given. Via this generalized theory it is shown that a self orthogonal Latin square 
design of order (3~~ - 1)/Z with a subself orthogonal Latin square design of 
order (pa - 1)/2 can be constructed for any prime p > 2 and any positive integer 
a as long as p # 3, 5, 7 and 13 if u = I. Additional results concerning sets of 
orthogonal Latin square designs are also provided. 

I. INTRODUCTION AND SUMMARY 

Throughout this paper by an OL(n, r) design we mean a set consisting of r 
pairwise orthogonal Latin square designs of order n. We also use the notation 
Ll J- Lz to indicate that Ll and Lz are orthogonal and each is a Latin square 
design. We refer to Lz as an orthogonal mate for Ll . A Latin square design 
is said to be self orthogonal if L 1 L‘, where L’ denotes the transpose of L 
in the context of matrices. It is known [1] that a self orthogonal Latin square 
design exists for every order except 2, 3 and 6. 

A sub Latin square design of order t denoted by SLS(t) is a Latin square 
design of order t embedded in a larger Latin square design. Tt is known [5] that 
if L is of order n and if L contains an SLS(t) then n > 2t. By a combination 
of results given in Hedayat and Seiden [5] and by Mann [7] one can, without 
much difficulty, argure that if a member of an OL(n, r) design contains an 
SLS(t) then 

n > 2t if fr -= O(mod 4), 
n>2t+l if n zz l(mod 4), 
n > 2t if n = 2(mod 4), 
n 2 2t + 1 if n -: 3(mod 4). 
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By a sub OL(t, 2) design we mean an OL(t, 2) design embedded in an 
OL(n, 2) design, n > t, such that each member of the latter design contains 
one member of the former design occupying the same fz cells in each design. 
The family of OL(n, 2) designs with sub OL(t, 2) designs is a very useful 
family of designs in the field of experimental designs and many related fields. 
In particular, if the OL(n, 2) design and its sub OQl, 2) design is obtained 
from a self orthogonal Latin square design then it has many additional useful 
properties [3, 41. Note that if L is self orthogonal and if it contains a self 
orthogonal Latin square design of order r with its main diagonal lying on the 
main diagonal of L then {L, f,‘} is an OL(n, 2) design with a sub OL(?, 2) 
design. Therefore, a problem of interest is: for what pairs of integers n and r 
can one construct a self orthogonal Latin square design L of order n with a 
sub self orthogonal Latin square design of order t such that its main diagonal 
lies on the main diagonal of L? It is shown here that if n = (3~~ - 1)/2 and 
f = (pm - 1)/2, p, a prime greater than 13, then such a design can be con- 
structed. Our algorithm is based on an extension of the theory of sum 
composition of Hedayat and Seiden [6] which is treated briefly in Section 2. 
Additional results concerning orthogonal Latin square designs based on the 
theory of sum composition are also given throughout the paper. The reader 
is referred to Hedayat and Seiden [6] and Denes and Keedwell [2] for details 
and definitions of terms used here. 

2. BASIC THEOREMS IN THE THEORY OF SUM COMPOSITION 
OF LATIN SQUARE DESIGNS 

Consider an m x m square A(L) with a Latin square design L or order 
n < m with a transversal in its n x fl top left corner subsquare. By the 
vertical projection of this transversal in L onto the rth row, r > n, of ,4(L) 
we mean filling the (r, j) cell of this row by that element of this transversal 
which appears in the,jth column of L, j = 1,2,..., n. Similarly by the horizontal 
projection of this transversal onto the rth column, t > n, of A(,!,) we mean 
filling the (i, r) cell of this column by that element of this transversal which 
appears in the ith row of L, i = 1, 2 ,..., n. 

If Ll is a Latin square design of order nI with nZ parallel transversals on ZI 
and if Lz is a Latin square design of order nz on ZZ , & n .ZZ = % . Then we 
can construct a Latin square of order nI + nt based on Ll and Lz . To do this, 
let Al(Ll , L& be the square of order n = nl + Q with Ll in its nl x rzl top 
left corner subsquare and Lz in its fiZ x nz bottom right corner subsquare. 
Project the nz transversals in Ll vertically and horizontally onto the last nz 
rows and columns of Al(Ll , Lz) in any order, call the resulting square 
Az(Ll , L.J. Now replace the nl entries of each transversal in Ll by a fixed 
element of ZZ such that no two transversals are being replaced by the same 
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element of Z2, call the resulting square &(& , ~5~). Clearly &(& , ,!,.J is a 
Latin square design of order n on ,Z!‘r u ,Z2 . 

It can be shown that if Z1 = GE’(q), the Galois field of order nl , then 

where B(x~ , yO) is the n1 x nl square with X~CQ + Y,+~ in its (i,,j) entry, 
ai , aj , X~ , ya in Z1 , forms an OL(nl , 3) design if 

Note that the nl cells in B(x~ , y2) and B(x~ , ya) corresponding to the nl cells 
in B(xl, y,) with a fixed entry, sat t, form a common transversal for 

We label this transversal in B(x2 , yJ and B(x~ , ys) by t. Therefore, as t goes 
over Z1 we can locate and name nl parallel transversals for Sr . Now consider 
A(B(x~, y2)) and @(x3, y&) each of size rr x n with n > nl . We are 
interested to characterize: 

(i) The n1 pairs obtained by the vertical projection of transversal t1 
in B(x~, yJ onto say the rth (r > rrl) row of A(B(x2 , yJ) and the vertical 
projection of transversal t2 in B(x~ , yJ onto the rth row of .~(B(x~ , y&). 

(ii) The nl pairs obtained by the horizontal projection of transversal tl 
in B(x~, yz) onto say the cth (c > n,) cohtmn of A(B(xz, yJ) and the horizontal 
projection of transversal t3 in B(xS , yJ onto the cth column of A(B(x~, ys)). 

These characterization are needed for further development in the area. 

THEOREM 2.1. The nl pairs obtained by the vertical projection of transversaI 
tl in B(xz , yJ and tran.sversaI tz in B(xz , yJ onto the same row of A(B(xz , y-J) 
and A(B(xz , y&) is the same as the n, pairs obtained by transversal k,,(tl , t2) 
in B(xz , y& and in B(xS , y& where 
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ProoJ The nI entries of the rth row of @(xi, yf)) upon vertical projection 
of transversal tieI onto it are 

X&&l + (yi - xix;lyl) aj , i=2,3; j= 1,2 ,..., q. 

Note that the above expression has nothing to do with the value of r. There- 
fore, the Q pairs obtained by the nI entries of the rth row of A(B(xz, yz)) 
and &3(x3 , y3)) are: 

b201 + c Y2 - ~2CYd 03 3 x302 + t Y3 - X3G1Yd %I 
j = I, 2,.. ., nl . (11 

On the other hand, the rrI pairs obtained from the corresponding cells of 
transversal t in B(xz , YJ and B(x3 , y3) are: 

Equating (I) to (2) componentwise and solving for t we obtain t = kv(tl , t2) 
as given in the theorem. 

Similarly we can prove that: 

THEOEM 2.2. The nl puirs obtained by the horizontal projection of 
transversal tl in B(xS , yZ) and transversal tS in B(x3 , y3) is the same as the nl 
pairs obtained by the transversal kh(tl , t& where 

COROLLARY 2.1. (i) ku(tl , tJ = tl or t2 if and only if tl = t2 , 

(ii) kh(tl , t2) = tl or t2 fand onZy if tl = t2 . 

COROLLARY 2.2. Forxl= l,yl= -l,x2=x,y2=y,x3=y,y3=x 

(9 Mh , t21 = C yh - &NY - -V9 
6) k& , t21 = Oh - &Xy - W, 

(iii) Mh , t2) + Mtl , t2) = tl + t2 . 

This later corollary is needed for the development of the results given 
in Section 4. 



206 A. HEDAYAT 

3. SIX STEPS FOR THE CONSTRUCTION OF r MUTUALLY ORTHOGONAL 
LATIN SQUARES OF ORDER n VIA SUM COMPOSITION METHOD 

Successful implementation of all the following steps produces a set of r 
mutually orthogonal Latin square of order n via sum composition technique. 

Step One. Decompose n as n = n1 + nz with nl = pE, p a prime, B a 
positive integer and n1 > rnz . 

Step Two. Construct a set of r mutually orthogonal Latin squares of 
order ns . Denote it by {fY1 , HZ ,..., E&}. 

Step Three. Select xj, yj , j = 0, l,..., r in GF(nJ such that X~ # 0,~~ # 0 
and Y~XT’ # yj,xjE’* j #j’. 

Step Four. Construct {B(x~ , yj), j = 0, I ,..., r}. 

Step Five. Select a set of nZ parallel transversals determined by the 
elements of B(x,, , y,J in B(xj , yj). Say Tj = {tjl , tjz ,..., tin2} such that 
Td nj+y Tif = %, j = I, 2 ,..., r. 

Step Six. Construct Lj = ,4JB(xi , yJ, HJ, i.e., a Latin square of order n 
based on B(x~ , yJ and Hj (see Section 2), j = 1,2,..., r, such that 

Kw(,j, j’) u Kh(,j,,j’) = Tj U Tj, , j #,j’, j, j’ = 1, 2 ,... , r, 

where KV( j, j’) and Kh( j, j’) are the sets of transversals kV( , ) and kh( , ) as 
characterized in Theorems 2.1 and 2.2 while generating Lj and Lj, respectively. 
Then {Ll , Lz ,..., Lr} is a set of r mutually orthogonal Latin squares of 
order n. 

It is clear that if step one and two can be completed then one can auto- 
matically finish steps three, four and five. However, it is quite possible that 
by no means one can finish step six for some cases. Failure to finish step 
six usually come from bad choices of X~ , yj and T$ in steps three and five. 
Therefore, one should go back to these steps and modify the choices. It is also 
possible that for some decomposition of n it is impossible to finish step six 
even though step two is possible. To mention one example, it is impossible 
to go through step six, if nz = 1 as it is evident from the results in Section 2. 

Remark 3.1. As apparent the construction of an OL(n, r) design via the 
method of sum composition is not a trivial problem and the major confronting 
questions are: 

(i) How to choose xi and yj, j = 0, l,..., r? If r = 2 then x2 = XT’ 
and x0 = y,, = y1 = yZ = 1 simplifies the calculation considerably. 

(ii) How to choose Tj, j = I, 2 ,..., r? If nz divides q - 1 then our 
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experience indicates that we are computationally better off if we let Tj be 
a coset of a subgroup of order Q in GF(PI~) - {O}. This point will be supported 
shortly via an example. 

(iii) How to project vertically and horizontally the members of Tj , 
so that 

KJj, j’) u Kh( j, j’) = Tj u Ty . 

EXAMPLE 3.1. One can utilize a result of Hedayat and Seiden [3] and 
construct an OL(46, 2) design via sum composition of either an OL(43, 2) 
design and an OL(3, 2) design or an OL(41, 2) design and an OL(5, 2) 
design. In the sequel we show, explicitly, how to construct an OL(46, 3) 
design via sum composition of an OL(41, 3) design and an OL(5, 3) design. 
To do this we have to find x~, yj, j = 0, 1,2, 3 together with three non- 
intersecting subsets each of size 5 in GF(41). Also we should exhibit a success- 
ful projection rule mentioned in Step six. 

Let x,, = -1, x1 = 33, x2 = 37, x3 = 38 and yj = 1, j = 0, 1,2, 3. 
Since {I, 10, 18, 16, 37} is a subgroup of order 5 in GF(41)-{O}, we take the 
the following three costs as our TI , Tz , and Ts . 

TI = {30, 29, 13, 7, 3} generated by 3, 
Tz = {26, 19, 17, 14, 6} generated by 6, 
Ts = {40, 31, 23, 25, 41 generated by 4. 

Construct {B(- 1, 1), B(33, l), B(37, l), L3(38, l)}. The table below summarizes 
the rules of projections. 

Vert. and horiz. 
projections 

B(33, 1) 
B(37, 11 
B(38, 11 

-th column or row 

42 43 44 45 46 

30 13 7 29 3 
6 19 26 14 17 

40 31 23 25 4 

For example, in forming & based on B(33, l), we should project trans- 
versals 30, 13, 7, 29 and 3 onto rows (columns) 42, 43,44, 45,46 respectively 
Now the reader can check for himself that 

Kv(j,j')uKh(j,j')= TjuTj,,j#j',j,j'= 1,2,3. 
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4. A FAMILY OF SELF ORTHOGONAL LATIN SQUARE DESIGNS 
WITH SUBSELF ORTHOGONAL LATIN SQUARE DESIGNS 

Throughout this section it is assumed that X, y E GF(nl) with x # 0 
andy#O. 

THEOREM 4.1. LI = B(x, y) is a self orthogonal Latin square design of 
order nI if and only if x # y # 0. 

ProojI B(x, y) is self orthogonal if it is orthogonal to its transpose 
B( y, x)~ Consider all cells of B(x, y) which contain a fixed element of GF(nI) 
say t. Such entries are representable as 

xq + yaj = t. 

The corresponding entries in B(y, x) are 

YCXi + XOlj with xai + yaj = t. 

This implies that these nI entries are representable by 

tyx-1 + (x2 - J+)x-bi 

for n1 different choices of aj . Thus these entries exhaust G&J if and only if 
(x2 - y2)x-l # 0 or equivalently x # y # 0. 

Before we proceed further we need the following lemma. 

LEMMA 4. I. Let S = {B(l, - 1), B(x, y), B( y, x)} such that x # y. 
If B(x, y) is trnasposed then the transversal t occupies the same ceils and has 
the same ualues as the transversal -t in 3( y, x). 

Prooj It follows directly from the definition of the transversal f and the 
fact that B( y, x) is the transpose of B(x, y). 

Our goal here is to compose & = B(x, y) with a self orthogonal Latin 
square design of order nz < [n,/2] such that the resulting design A3(LI , LJ 
[see Section 21 is self orthogonal. This is equivalent to composing LI’ = 
B(y, X) with Lz’ such that A3(LI’, Lz’) is orthogonal to A3(LI , LJ and 
&(5r’, L2’) is the transpose of A3(LI , L2). These requirements put heavy 
restrictions on the choice of transversals to be removed for projections in 
WY, 4. 

The patterns of projections will be also controlled by those given in the 
formation of &(LI, L2) as it is evident by the following lemmas whose 
proofs are straight forward and thus omitted. 
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LEMMA 4.2. A necessary condition for AS(LI‘, LZ’) to be the transpose and 
an orthogonal mate of AS(LI , LZ) is: If TI = {tIi , i = 1,2,..., nZ} is selected 
for projections in B(x, y) then the set of selected transversals for projections 
in B( y, x) should be TZ = - TI . 

Since TI n TZ should be empty and since TZ = -TI this means that 
ti + tj # 0 for any choice of i and j. This leads us to the following definition. 

DEFINITION 4.1. By an inverse free set of transversals we mean a set T 
of transversals such that T n -T = a. 

LEMMA 4.3. A necessary condition for Aa(LI’, LZ’) to be the transpose and 
an orthogonal mate of AS(h , LZ) is: If T ransversal ti E Ti is projected vertically 
and horizontally on the pth row and qth column in the formation of A3(Ll , LJ 
then Transversal - ti E TZ should be projected vertically and horizontally on 
the pth row and qth column in the formation of AS(LI’, LZ’). 

EXAMPLE~.~. Letnl= llandnZ=4,x=2andy= -1.Thenform 
L = A3(Ll, L.& by the sum composition of a self orthogonal Latin square L2 
of order 4 and LI = B(2, -1) using Tl = {7, 8, 9, IO} for projections. 
If we project vertically on the 12th row,..., and 15th row transversals IO, 9, 8 
and 7 respectively and if we project horizontally on the 12th column,,.., 
and 15th column transversals 8, IO, 7 and 9 respectively then L. is a self 
orthogonal Latin square of order 15 with a sub-self orthogonal Latin square 
of order 4. 

Wallis [5] has also produced a self orthogonal Latin square design of 
order 15 which resembles the above design. However, WaIlis does not 
explain how his design has been obtained. The above design is non-isomorphic 
to the one given by Brayton, Coppersmith and Hoffman [l]. 

THEOREM 4.2. Let p be any prime except 2, 3, 5, 7 and 13. Then there 
exists a self orthogonal Latin square design of order (3p - 1)/2 with a subself 
orthogonal Latin square design of order (p - 1)/2. 

Proof. By construction. It is well known [I] that there exists a self 
orthogonal Latin square design for any order except 2, 3, and 6. So let LZ 
be any self orthogonal Latin square design of order (p - 2)/2. Let also 
LI = B(x, y) be a Latin square design with x, y in GF(p) as long as x # y # 0 
Project the elements of the inverse free set TI = { 1, 2,..., (p - 1)/2} in the 
following fashions: 

Horizontal projection: project the ith transversal on the (nl + i)th column. 
Vertical projection: project the ith transversal on the (nl + i)th row. It can 

be easily verified that ku(t, -t) = t(x + y)(x - y)-l and kv(tl , - tl) # 
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Ms , -tJ for tl # ts . Therefore Kv(l, 2) generates half of GF(p) - {O}. 
On the other hand &(I, 2) = -&(I, 2) and thus 

Kv(l,2)u&(l,2) = TIuTz with Tz = -TI. 

COROLLARY 4.1. Let p be any prime except 2, 3, 5, 7 and 13. Then there 
exists a self orthogonal Latin square design of order (3~~ - 1)/2 with a sub self 
orthogonal Latin square design of order (Pa - 1)/2 for any positive integer a. 
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