447 research outputs found

    Moving striations and anode effects in an argon glow discharge

    Get PDF
    Moving striations and anode oscillations were studied over a wide range of gas pressures and discharge currents in an argon glow discharge. Striation spacing, frequency and velocity were measured as a function of discharge current from low currents to the current for extinction of moving striations, for pressures from 1 to 16 mm Hg. Striation frequency was also measured as a function of pressure for various radii discharge tubes. The anode spot light oscillations were eliminated by use of an auxiliary anode discharge, which brought the positive column in contact with the anode and eliminated the oscillat­ing anode fall in potential. This change in the anode region produced no significant change in the striation parameters, but greatly reduced and altered the frequency of the poten­tial oscillations across the discharge tube. The potential oscillations now followed the wave form and frequency of the striation oscillations instead of the frequency of the anode spot oscillations. By use of a discharge tube, constructed with sections of different radius, moving striations in the positive column were isolated from both cathode and anode by sections of homogenous positive column in which no voltage oscillations were detectable by floating probes. This leads to the con­clusion that striations are due to an inherent instability of the positive column, and not to the effects developed by the anode or cathode.http://www.archive.org/details/movingstriations00habeCaptain, United States ArmyCaptain, United States ArmyApproved for public release; distribution is unlimited

    A digitally printed optoelectronic nose for the selective trace detection of nitroaromatic explosive vapours using fluorescence quenching

    Get PDF
    We report on a fluorescent optoelectronic nose for the trace detection of nitroaromatic explosive vapours. The sensor arrays, fabricated by aerosol-jet printing, consist of six different commercially available polymers as transducers. We assess the within-batch reproducibility of the printing process and we report that the sensor polymers show efficient fluorescence quenching capabilities with detection limits of a few parts-per-billion in air. We further demonstrate the nose\u27s ability to discriminate between several nitroaromatics including nitrobenzene, 1,3-dinitrobenzene and 2,4-dinitrotoluene at three different concentrations using linear discriminant analysis. Our approach enables the realization of highly integrated optical sensor arrays in optoelectronic noses for the sensitive and selective detection of nitroaromatic explosive trace vapours using a potentially low-cost digital printing technique suitable for high-volume fabrication

    Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity

    Full text link
    We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of 2O(n)2^{\mathcal{O}(n)} on the size of nondeterministic finite automata (NFAs) representing the subword closure of a CFG of size nn. (2) We present a family of CFGs for which the minimal deterministic finite automata representing their subword closure matches the upper-bound of 22O(n)2^{2^{\mathcal{O}(n)}} following from (1). Furthermore, we prove that the inequivalence problem for NFAs representing sub- or superword-closed languages is only NP-complete as opposed to PSPACE-complete for general NFAs. Finally, we extend our results into an approximation method to attack inequivalence problems for CFGs

    An approach to computing downward closures

    Full text link
    The downward closure of a word language is the set of all (not necessarily contiguous) subwords of its members. It is well-known that the downward closure of any language is regular. While the downward closure appears to be a powerful abstraction, algorithms for computing a finite automaton for the downward closure of a given language have been established only for few language classes. This work presents a simple general method for computing downward closures. For language classes that are closed under rational transductions, it is shown that the computation of downward closures can be reduced to checking a certain unboundedness property. This result is used to prove that downward closures are computable for (i) every language class with effectively semilinear Parikh images that are closed under rational transductions, (ii) matrix languages, and (iii) indexed languages (equivalently, languages accepted by higher-order pushdown automata of order 2).Comment: Full version of contribution to ICALP 2015. Comments welcom

    Clinical outcome after particle therapy for meningiomas of the skull base: toxicity and local control in patients treated with active rasterscanning

    Get PDF
    Background: Meningiomas of the skull base account for 25–30% of all meningiomas. Due to the complex structure of the cranial base and its close proximity to critical structures, surgery is often associated with substantial morbidity. Treatment options include observation, aggressive surgical intervention, stereotactic or conventional radiotherapy. In this analysis we evaluate the outcome of 110 patients with meningiomas of the skull base treated with particle therapy. It was performed within the framework of the “clinical research group heavy ion therapy” and supported by the German Research Council (DFG, KFO 214). Methods: Between May 2010 and November 2014, 110 Patients with skull base meningioma were treated with particle radiotherapy at the Heidelberg Ion Therapy Center (HIT). Primary localizations included the sphenoid wing (n = 42), petroclival region (n = 23), cavernous sinus (n = 4), sella (n = 10) and olfactory nerve (n = 4). Sixty meningiomas were benign (WHO °I); whereas 8 were high-risk (WHO °II (n = 7) and °III (n = 1)). In 42 cases histology was not examined, since no surgery was performed. Proton (n = 104) or carbon ion (n = 6) radiotherapy was applied at Heidelberg Ion Therapy Center (HIT) using raster-scanning technique for active beam delivery. Fifty one patients (46.4%) received radiotherapy due to tumor progression, 17 (15.5%) after surgical resection and 42 (38.2%) as primary treatment. Results: Median follow-up in this analysis was 46,8 months (95% CI 39,9–53,7; Q1-Q3 34,3–61,7). Particle radiotherapy could be performed safely without toxicity-related interruptions. No grade IV or V toxicities according to CTCAE v4.0 were observed. Particle RT offered excellent overall local control rates with 100% progression-free survival (PFS) after 36 months and 96.6% after 60 months. Median PFS was not reached due to the small number of events. Histology significantly impacted PFS with superior PFS after 5 years for low-risk tumors (96.6% vs. 75.0%, p = 0,02). Overall survival was 96.2% after 60 months and 92.0% after 72 months from therapy. Of six documented deaths, five were definitely not and the sixth probably not meningioma-related. Conclusion Particle radiotherapy is an excellent treatment option for patients with meningiomas of the skull base and can lead to long-term tumor control with minimal side effects. Other prospective studies with longer follow-up will be necessary to further confirm the role of particle radiotherapy in skull base meningioma

    Evaluation of particle radiotherapy for the re-irradiation of recurrent intracranial meningioma

    Get PDF
    Background: With the advance of modern irradiation techniques, the role of radiotherapy (RT) for intracranial meningioma has increased significantly throughout the past years. Despite that tumor’s generally favorable outcome with local control rates of up to 90% after ten years, progression after RT does occur. In those cases, re-irradiation is often difficult due to the limited radiation tolerance of the surrounding tissue. The aim of this analysis is to determine the value of particle therapy with its better dose conformity and higher biological efficacy for re-irradiating recurrent intracranial meningioma. It was performed within the framework of the “clinical research group heavy ion therapy” and funded by the German Research Council (DFG, KFO 214). Methods: Forty-two patients treated with particle RT (protons (n = 8) or carbon ions (n = 34)) for recurrent intracranial meningioma were included in this analysis. Location of the primary lesion varied, including skull base (n = 31), convexity (n = 5) and falx (n = 6). 74% of the patients were categorized high-risk according to histology with a WHO grading of II (n = 25) or III (n = 6), in the remaining cases histology was either WHO grade I (n = 10) or unknown (n = 1). Median follow-up was 49,7 months. Results: In all patients, re-irradiation could be performed safely without interruptions due to side effects. No grade IV or V toxicities according to CTCAE v4.0 were observed. Particle RT offered good overall local control rates with 71% progression-free survival (PFS) after 12 months, 56,5% after 24 months and a median PFS of 34,3 months (95% CI 11,7–56,9). Histology had a significant impact on PFS yielding a median PFS of 25,7 months (95% CI 5,8–45,5) for high-risk histology (WHO grades II and III) while median PFS was not reached for low-risk tumors (WHO grade I) (p = 0,03). Median time to local progression was 15,3 months (Q1-Q3 8,08–34,6). Overall survival (OS) after re-irradiation was 89,6% after 12 months and 71,4% after 24 months with a median OS of 61,0 months (95% CI 34,2–87,7). Again, WHO grading had an effect, as median OS for low-risk patients was not reached whereas for high-risk patients it was 45,5 months (95% CI 35,6–55,3). Conclusion: Re-irradiation using particle therapy is an effective method for the treatment of recurrent meningiomas. Interdisciplinary decision making is necessary to guarantee best treatment for every patient

    Creep and long-term properties of alkali-activated Swedish-slag concrete

    Get PDF
    The construction of the future is moving in the direction of environmentally friendly materials and the use of various types of industrial byproducts and wastes. The use of blast furnace slag (BFS) for the production of concrete is one of those alternatives. In this study, pastes and concretes based on high-MgO BFS were alkali activated with 10% by weight sodium carbonate, sodium silicate, and a combination of both. Heat treatment and laboratory curing were applied. The results showed that heat treatment was effective at reducing the drying shrinkage of alkali-activated slag concretes and promoting high early strength. However, the sodium carbonate–activated slag concrete specimens showed a reduction in compressive strength at later ages. All concrete specimens tested exhibited high drying shrinkage; the highest values were for sodium silicate–activated concretes and the lowest were for sodium carbonate–activated concretes. All concretes tested showed very large creep, which was partly related to the small maximum aggregate size (8 mm) and the effects of carbonation. The carbonation depth after 12–24  months was significantly smaller for the heat-treated specimens and for concrete activated with sodium silicate. The carbonation process resulted in a more porous binder matrix, leading to long-term strength loss and increased creep, especially for sodium silicate–activated mixes

    A Verification Toolkit for Numerical Transition Systems

    Get PDF
    This paper presents a publicly available toolkit and a benchmark suite for rigorous verification of Integer Numerical Transition Systems (INTS), which can be viewed as control-flow graphs whose edges are annotated by Presburger arithmetic formulas. We present FLATA and ELDARICA, two verification tools for INTS. The FLATA system is based on precise acceleration of the transition relation, while the ELDARICA system is based on predicate abstraction with interpolation-based counterexample-driven refinement. The ELDARICA verifier uses the PRINCESS theorem prover as a sound and complete interpolating prover for Presburger arithmetic. Both systems can solve several examples for which previous approaches failed, and present a useful baseline for verifying integer programs. The infrastructure is a starting point for rigorous benchmarking, competitions, and standardized communication between tools
    corecore