21,672 research outputs found
Guessing probability distributions from small samples
We propose a new method for the calculation of the statistical properties, as
e.g. the entropy, of unknown generators of symbolic sequences. The probability
distribution of the elements of a population can be approximated by
the frequencies of a sample provided the sample is long enough so that
each element occurs many times. Our method yields an approximation if this
precondition does not hold. For a given we recalculate the Zipf--ordered
probability distribution by optimization of the parameters of a guessed
distribution. We demonstrate that our method yields reliable results.Comment: 10 pages, uuencoded compressed PostScrip
Entropy and Long range correlations in literary English
Recently long range correlations were detected in nucleotide sequences and in
human writings by several authors. We undertake here a systematic investigation
of two books, Moby Dick by H. Melville and Grimm's tales, with respect to the
existence of long range correlations. The analysis is based on the calculation
of entropy like quantities as the mutual information for pairs of letters and
the entropy, the mean uncertainty, per letter. We further estimate the number
of different subwords of a given length . Filtering out the contributions
due to the effects of the finite length of the texts, we find correlations
ranging to a few hundred letters. Scaling laws for the mutual information
(decay with a power law), for the entropy per letter (decay with the inverse
square root of ) and for the word numbers (stretched exponential growth with
and with a power law of the text length) were found.Comment: 8 page
Bulk, rare earth and other trace elements in Apollo 14 and 15 and Luna 16 samples
The chemical abundances were measured by instrumental and radiochemical neutron activation analysis in a variety of lunar specimens. Apollo 14 soils are characterized by significant enrichments of Al2O3, Na2O and K2O and depletions of TiO2, FeO, MnO and Cr2O3 relative to Apollo 11 and to most of Apollo 12 soils. The uniform abundances in 14230 core tube soils and three other Apollo 14 soils indicate that the regolith is uniform to at least 22 cm depth and within approximately 200 m from the lunar module. Two Luna 16 breccias are similar in composition to Luna 16 soils. Four Apollo 15 soils (LM, STA 4, 9, and 9a) have variable compositions. Interelement correlations between MnO-FeO, Sc-FeO, V-Cr2O3 and K2O-Hf negate the hypothesis that howardite achondrites may be primitive lunar matter, argue against the fission hypothesis for the origin of the moon, and precludes any selective large scale volatilization of alkalies during lunar magmatic events
A configuration system for the ATLAS trigger
The ATLAS detector at CERN's Large Hadron Collider will be exposed to
proton-proton collisions from beams crossing at 40 MHz that have to be reduced
to the few 100 Hz allowed by the storage systems. A three-level trigger system
has been designed to achieve this goal. We describe the configuration system
under construction for the ATLAS trigger chain. It provides the trigger system
with all the parameters required for decision taking and to record its history.
The same system configures the event reconstruction, Monte Carlo simulation and
data analysis, and provides tools for accessing and manipulating the
configuration data in all contexts.Comment: 4 pages, 2 figures, contribution to the Conference on Computing in
High Energy and Nuclear Physics (CHEP06), 13.-17. Feb 2006, Mumbai, Indi
Analysing powers for the reaction and for np elastic scattering from 270 to 570 MeV
The analysing power of the reaction for neutron energies between threshold and 570 MeV has been determined
using a transversely polarised neutron beam at PSI. The reaction has been
studied in a kinematically complete measurement using a time-of-flight
spectrometer with large acceptance. Analysing powers have been determined as a
function of the c.m. pion angle in different regions of the proton-proton
invariant mass. They are compared to other data from the reactions and . The np elastic scattering analysing power was determined as a
by-product of the measurements.Comment: 12 pages, 6 figures, subitted to EPJ-
The reaction from threshold up to 570 MeV
The reaction has been studied in a
kinematically complete measurement with a large acceptance time-of-flight
spectrometer for incident neutron energies between threshold and 570 MeV. The
proton-proton invariant mass distributions show a strong enhancement due to the
pp() final state interaction. A large anisotropy was found in the
pion angular distributions in contrast to the reaction . At small energies, a large forward/backward asymmetry has been
observed. From the measured integrated cross section , the isoscalar cross section has been extracted.
Its energy dependence indicates that mainly partial waves with Sp final states
contribute. Note: Due to a coding error, the differential cross sections as shown in Fig. 9 are too small by a factor of two, and
inn Table 3 the differential cross sections
are too large by a factor of . The integrated cross sections and all
conclusions remain unchanged. A corresponding erratum has been submitted and
accepted by European Physics Journal.Comment: 18 pages, 16 figure
Saccadic eye movement abnormalities in autism spectrum disorder indicate dysfunctions in cerebellum and brainstem
BACKGROUND: Individuals with autism spectrum disorder (ASD) show atypical scan paths during social interaction and when viewing faces, and recent evidence suggests that they also show abnormal saccadic eye movement dynamics and accuracy when viewing less complex and non-social stimuli. Eye movements are a uniquely promising target for studies of ASD as their spatial and temporal characteristics can be measured precisely and the brain circuits supporting them are well-defined. Control of saccade metrics is supported by discrete circuits within the cerebellum and brainstem - two brain regions implicated in magnetic resonance (MR) morphometry and histopathological studies of ASD. The functional integrity of these distinct brain systems can be examined by evaluating different parameters of visually-guided saccades. METHODS: A total of 65 participants with ASD and 43 healthy controls, matched on age (between 6 and 44-years-old), gender and nonverbal IQ made saccades to peripheral targets. To examine the influence of attentional processes, blocked gap and overlap trials were presented. We examined saccade latency, accuracy and dynamics, as well as the trial-to-trial variability of participants’ performance. RESULTS: Saccades of individuals with ASD were characterized by reduced accuracy, elevated variability in accuracy across trials, and reduced peak velocity and prolonged duration. In addition, their saccades took longer to accelerate to peak velocity, with no alteration in the duration of saccade deceleration. Gap/overlap effects on saccade latencies were similar across groups, suggesting that visual orienting and attention systems are relatively spared in ASD. Age-related changes did not differ across groups. CONCLUSIONS: Deficits precisely and consistently directing eye movements suggest impairment in the error-reducing function of the cerebellum in ASD. Atypical increases in the duration of movement acceleration combined with lower peak saccade velocities implicate pontine nuclei, specifically suggesting reduced excitatory activity in burst cells that drive saccades relative to inhibitory activity in omnipause cells that maintain stable fixation. Thus, our findings suggest that both cerebellar and brainstem abnormalities contribute to altered sensorimotor control in ASD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2040-2392-5-47) contains supplementary material, which is available to authorized users
Dielectronic Recombination (via N=2 --> N'=2 Core Excitations) and Radiative Recombination of Fe XX: Laboratory Measurements and Theoretical Calculations
We have measured the resonance strengths and energies for dielectronic
recombination (DR) of Fe XX forming Fe XIX via N=2 --> N'=2 (Delta_N=0) core
excitations. We have also calculated the DR resonance strengths and energies
using AUTOSTRUCTURE, HULLAC, MCDF, and R-matrix methods, four different
state-of-the-art theoretical techniques. On average the theoretical resonance
strengths agree to within <~10% with experiment. However, the 1 sigma standard
deviation for the ratios of the theoretical-to-experimental resonance strengths
is >~30% which is significantly larger than the estimated relative experimental
uncertainty of <~10%. This suggests that similar errors exist in the calculated
level populations and line emission spectrum of the recombined ion. We confirm
that theoretical methods based on inverse-photoionization calculations (e.g.,
undamped R-matrix methods) will severely overestimate the strength of the DR
process unless they include the effects of radiation damping. We also find that
the coupling between the DR and radiative recombination (RR) channels is small.
We have used our experimental and theoretical results to produce
Maxwellian-averaged rate coefficients for Delta_N=0 DR of Fe XX. For kT>~1 eV,
which includes the predicted formation temperatures for Fe XX in an optically
thin, low-density photoionized plasma with cosmic abundances, our experimental
and theoretical results are in good agreement. We have also used our R-matrix
results, topped off using AUTOSTRUCTURE for RR into J>=25 levels, to calculate
the rate coefficient for RR of Fe XX. Our RR results are in good agreement with
previously published calculations.Comment: To be published in ApJS. 65 pages with 4 tables and lots of figure
Resolving the nature of electronic excitations in resonant inelastic x-ray scattering
The study of elementary bosonic excitations is essential toward a complete
description of quantum electronic solids. In this context, resonant inelastic
X-ray scattering (RIXS) has recently risen to becoming a versatile probe of
electronic excitations in strongly correlated electron systems. The nature of
the radiation-matter interaction endows RIXS with the ability to resolve the
charge, spin and orbital nature of individual excitations. However, this
capability has been only marginally explored to date. Here, we demonstrate a
systematic method for the extraction of the character of excitations as
imprinted in the azimuthal dependence of the RIXS signal. Using this novel
approach, we resolve the charge, spin, and orbital nature of elastic
scattering, (para-)magnon/bimagnon modes, and higher energy dd excitations in
magnetically-ordered and superconducting copper-oxide perovskites (Nd2CuO4 and
YBa2Cu3O6.75). Our method derives from a direct application of scattering
theory, enabling us to deconstruct the complex scattering tensor as a function
of energy loss. In particular, we use the characteristic tensorial nature of
each excitation to precisely and reliably disentangle the charge and spin
contributions to the low energy RIXS spectrum. This procedure enables to
separately track the evolution of spin and charge spectral distributions in
cuprates with doping. Our results demonstrate a new capability that can be
integrated into the RIXS toolset, and that promises to be widely applicable to
materials with intertwined spin, orbital, and charge excitations
- …