25,677 research outputs found

    Non-gaussianity from the second-order cosmological perturbation

    Full text link
    Several conserved and/or gauge invariant quantities described as the second-order curvature perturbation have been given in the literature. We revisit various scenarios for the generation of second-order non-gaussianity in the primordial curvature perturbation \zeta, employing for the first time a unified notation and focusing on the normalisation f_{NL} of the bispectrum. When the classical curvature perturbation first appears a few Hubble times after horizon exit, |f_{NL}| is much less than 1 and is, therefore, negligible. Thereafter \zeta (and hence f_{NL}) is conserved as long as the pressure is a unique function of energy density (adiabatic pressure). Non-adiabatic pressure comes presumably only from the effect of fields, other than the one pointing along the inflationary trajectory, which are light during inflation (`light non-inflaton fields'). During single-component inflation f_{NL} is constant, but multi-component inflation might generate |f_{NL}| \sim 1 or bigger. Preheating can affect f_{NL} only in atypical scenarios where it involves light non-inflaton fields. The curvaton scenario typically gives f_{NL} \ll -1 or f_{NL} = +5/4. The inhomogeneous reheating scenario can give a wide range of values for f_{NL}. Unless there is a detection, observation can eventually provide a limit |f_{NL}| \lsim 1, at which level it will be crucial to calculate the precise observational limit using second order theory.Comment: Latex file in Revtex style. 13 pages, 1 figure. v2: minor changes. Discussion in Subsection VI-A enlarged. References added. Conclusions unchanged. v3: minor typographic changes. Correlated and uncorrelated \chi^2 non-gaussianity concepts and consequences introduced. Section VI-A enlarged. Small change in Table I. References updated and added. Conclusions unchanged. Version to appear in Physical Review

    Momentum distributions of α\alpha-particles from decaying low-lying 12^{12}C-resonances

    Get PDF
    The complex scaled hyperspherical adiabatic expansion method is used to compute momentum and energy distributions of the three α\alpha-particles emerging from the decay of low-lying 12^{12}C-resonances. The large distance continuum properties of the wave functions are crucial and must be accurately calculated. We discuss separately decays of natural parity states: two 0+0^+, one 1−1^{-}, three 2+2^+, one 3−3^-, two 4+4^+, one 6+6^+, and one of each of unnatural parity, 1+1^{+}, 2−2^-, 3+3^+, 4−4^-. The lowest natural parity state of each JπJ^{\pi} decays predominantly sequentially via the 8^{8}Be ground state whereas other states including unnatural parity states predominantly decay directly to the continuum. We present Dalitz plots and systematic detailed momentum correlations of the emerging α\alpha-particles.Comment: 11 pages, 7 figures, accepted for publication in Physical Review

    Non-gaussianity at tree and one-loop levels from vector field perturbations

    Full text link
    We study the spectrum P_\zeta and bispectrum B_\zeta of the primordial curvature perturbation \zeta when the latter is generated by scalar and vector field perturbations. The tree-level and one-loop contributions from vector field perturbations are worked out considering the possibility that the one-loop contributions may be dominant over the tree level terms (both (either) in P_\zeta and (or) in B_\zeta) and viceversa. The level of non-gaussianity in the bispectrum, f_{NL}, is calculated and related to the level of statistical anisotropy in the power spectrum, g_\zeta. For very small amounts of statistical anisotropy in the power spectrum, the level of non-gaussianity may be very high, in some cases exceeding the current observational limit.Comment: LaTeX file, 11 pages, Main body: 8 pages, References: 3 pages. v2: Minor corrections. References added. Conclusions unchanged. v3: Minor corrections. Some references added and others updated. Version accepted for publication in Physical Review

    Frequency and voltage partitioning in presence of renewable energy resources for power system (example: North Chile power network)

    Get PDF
    This paper investigates techniques for frequency and voltage partitioning of power network based on the graph-theory. These methods divide the power system into distinguished regions to avoid the spread of disturbances and to minimize the interaction between these regions for frequency and voltage control of power system. In case of required active and reactive power for improving the performance of the power system, control can be performed regionally instead of a centralized controller. In this paper, renewable energy sources are connected to the power network to verify the effect of these sources on the power systems partitioning and performance. The number of regions is found based on the frequency sensitivity for frequency partitioning and bus voltage for voltage partitioning to disturbances being applied to loads in each region. The methodology is applied to the north part of Chile power network. The results show the performance and ability of graph frequency and voltage partitioning algorithm to divide large scale power systems to smaller regions for applying decentralized controllers.Peer ReviewedPostprint (published version

    On the Issue of the \zeta Series Convergence and Loop Corrections in the Generation of Observable Primordial Non-Gaussianity in Slow-Roll Inflation. Part II: the Trispectrum

    Full text link
    We calculate the trispectrum T_\zeta of the primordial curvature perturbation \zeta, generated during a {\it slow-roll} inflationary epoch by considering a two-field quadratic model of inflation with {\it canonical} kinetic terms. We consider loop contributions as well as tree level terms, and show that it is possible to attain very high, {\it including observable}, values for the level of non-gaussianity \tau_{NL} if T_\zeta is dominated by the one-loop contribution. Special attention is paid to the claim in JCAP {\bf 0902}, 017 (2009) [arXiv:0812.0807 [astro-ph]] that, in the model studied in this paper and for the specific inflationary trajectory we choose, the quantum fluctuations of the fields overwhelm the classical evolution. We argue that such a claim actually does not apply to our model, although more research is needed in order to understand the role of quantum diffusion. We also consider the probability that an observer in an ensemble of realizations of the density field sees a non-gaussian distribution. In that respect, we show that the probability associated to the chosen inflationary trajectory is non-negligible. Finally, the levels of non-gaussianity f_{NL} and \tau_{NL} in the bispectrum B_\zeta and trispectrum T_\zeta of \zeta, respectively, are also studied for the case in which \zeta is not generated during inflation.Comment: LaTex File, 27 pages, 8 figures. v2: Previous Section 2 has been removed. Two new sections (3 and 4) discussing the classicality condition given by Byrnes, Choi, and Hall, in JCAP 0902, 017 (2009), and the probability that an observer sees a non-gaussian distribution have been added. v3: Version accepted for publication in Physical Review
    • 

    corecore