568 research outputs found

    Charge redistribution at Pd surfaces: ab initio grounds for tight-binding interatomic potentials

    Full text link
    A simplified tight-binding description of the electronic structure is often necessary for complex studies of surfaces of transition metal compounds. This requires a self-consistent parametrization of the charge redistribution, which is not obvious for late transition series elements (such as Pd, Cu, Au), for which not only d but also s-p electrons have to be taken into account. We show here, with the help of an ab initio FP-LMTO approach, that for these elements the electronic charge is unchanged from bulk to the surface, not only per site but also per orbital. This implies different level shifts for each orbital in order to achieve this orbital neutrality rule. Our results invalidate any neutrality rule which would allow charge redistribution between orbitals to ensure a common rigid shift for all of them. Moreover, in the case of Pd, the power law which governs the variation of band energy with respect to coordination number, is found to differ significantly from the usual tight-binding square root.Comment: 6 pages, 2 figures, Latex; Phys.Rev. B 56 (1997

    Theory of Adsorption and Surfactant Effect of Sb on Ag (111)

    Full text link
    We present first-principles studies of the adsorption of Sb and Ag on clean and Sb-covered Ag (111). For Sb, the {\it substitutional} adsorption site is found to be greatly favored with respect to on-surface fcc sites and to subsurface sites, so that a segregating surface alloy layer is formed. Adsorbed silver adatoms are more strongly bound on clean Ag(111) than on Sb-covered Ag. We propose that the experimentally reported surfactant effect of Sb is due to Sb adsorbates reducing the Ag adatom mobility. This gives rise to a high density of Ag islands which coalesce into regular layers.Comment: RevTeX 3.0, 11 pages, 0 figures] 13 July 199

    Inhibited Al diffusion and growth roughening on Ga-coated Al (100)

    Full text link
    Ab initio calculations indicate that the ground state for Ga adsorption on Al (100) is on-surface with local unit coverage. On Ga-coated Al (100), the bridge diffusion barrier for Al is large, but the Al→\rightarrowGa {\it exchange barrier is zero}: the ensuing incorporation of randomly deposited Al's into the Ga overlayer realizes a percolation network, efficiently recoated by Ga atoms. Based on calculated energetics, we predict rough surface growth at all temperatures; modeling the growth by a random deposition model with partial relaxation, we find a power-law divergent roughness w∼t 0.07±0.02w\sim t^{\,0.07\pm0.02}.Comment: 4 pages RevTeX-twocolumn, no figures. to appear in Phys. Rev. Lett., July 199

    Phonon Properties of Knbo3 and Ktao3 from First-Principles Calculations

    Full text link
    The frequencies of transverse-optical Γ\Gamma phonons in KNbO3_3 and KTaO3_3 are calculated in the frozen-phonon scheme making use of the full-potential linearized muffin-tin orbital method. The calculated frequencies in the cubic phase of KNbO3_3 and in the tetragonal ferroelectric phase are in good agreement with experimental data. For KTaO3_3, the effect of lattice volume was found to be substantial on the frequency of the soft mode, but rather small on the relative displacement patterns of atoms in all three modes of the T1uT_{1u} symmetry. The TO frequencies in KTaO3_3 are found to be of the order of, but somehow higher than, the corresponding frequencies in cubic KNbO3_3.Comment: 8 pages + 1 LaTeX figure, Revtex 3.0, SISSA-CM-94-00

    Electronic structure and total energy of interstitial hydrogen in iron: Tight binding models

    Get PDF
    An application of the tight binding approximation is presented for the description of electronic structure and interatomic force in magnetic iron, both pure and containing hydrogen impurities. We assess the simple canonical d-band description in comparison to a non orthogonal model including s and d bands. The transferability of our models is tested against known properties including the segregation energies of hydrogen to vacancies and to surfaces of iron. In many cases agreement is remarkably good, opening up the way to quantum mechanical atomistic simulation of the effects of hydrogen on mechanical properties

    Systematic Control of Carrier Doping without Disorder at Interface of Oxide Heterostructures

    Full text link
    We propose a method to systematically control carrier densities at the interface of transition-metal oxide heterostructures without introducing disorders. By inserting non-polar layers sandwiched by polar layers, continuous carrier doping into the interface can be realized. This method enables us to control the total carrier densities per unit cell systematically up to high values of the order unity.Comment: 8 pages, 9 figure

    Gamma phonons and microscopic structure of orthorhombic KNbO3 from first-principles calculations

    Full text link
    {}From a series of total energy calculations by the full-potential linear muffin-tin orbital method, the total energy hypersurface as function of atomic displacements from equilibrium positions has been fitted for different Gamma phonon modes in orthorhombic KNbO3. Frequencies and eigenvectors of all TO Gamma phonons have been calculated in the harmonic approximation, and in the quantum oscillator scheme -- for A2 and B2 modes. The microscopic structure of the orthorhombic phase has been analyzed in a series of supercell calculations for different patterns of Nb displacements, providing indications in favour of the chain structure, with oppositely directed neighboring chains.Comment: 10 pages, including 3 LaTeX figure

    Nature of bonding and electronic structure in MgB2, a boron intercalation superconductor

    Full text link
    Chemical bonding and electronic structure of MgB2, a boron-based newly discovered superconductor, is studied using self-consistent band structure techniques. Analysis of the transformation of the band structure for the hypothetical series of graphite - primitive graphite - primitive graphite-like boron - intercalated boron, shows that the band structure of MgB2 is graphite-like, with pi-bands falling deeper than in ordinary graphite. These bands possess a typically delocalized and metallic, as opposed to covalent, character. The in-plane sigma-bands retain their 2D covalent character, but exhibit a metallic hole-type conductivity. The coexistence of 2D covalent in-plane and 3D metallic-type interlayer conducting bands is a peculiar feature of MgB2. We analyze the 2D and 3D features of the band structure of MgB2 and related compounds, and their contributions to conductivity.Comment: 4 pages in revtex, 3 figures in 4 separate EPS file

    An analysis of photoemission and inverse photoemission spectra of Si(111) and sulphur-passivated InP(001) surfaces

    Full text link
    Photoemission (PES) and inverse-photoemission spectra (IPES) for the sulphur-passivated InP(001) surface are compared with theoretical predictions based on density-functional calculations. As a test case for our methods, we also present a corresponding study of the better known Si(111) surface. The reported spectra for InP(001)-S agree well with the calculated ones if the surface is assumed to consist of a mixture of two phases, namely, the fully S-covered (2×2)(2\times2)-reconstructed structure, which contains four S atoms in the surface unit-cell, and a (2×2)(2\times2) structure containing two S and two P atoms per unit cell. The latter has recently been identified in total-energy calculations as well as in core-level spectra of S-passivated Si(111)-(2×1)(2\times1) is in excellent agreement with the calculations. The comparison of the experimental-PES with our calculations provides additional considerations regarding the nature of the sample surface. It is also found that the commonly-used density-of-states approximation to the photo- and inverse- photoemission spectra is not valid for these systems.Comment: Submitted to Phys. Rev. B; 6 postscript formatted pages; 7 figures in gif format; postscript figures available upon reques

    Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first principles calculations for copper

    Full text link
    First principles calculations of the Sigma 5 (310)[001] symmetric tilt grain boundary in Cu with Bi, Na, and Ag substitutional impurities provide evidence that in the phenomenon of Bi embrittlement of Cu grain boundaries electronic effects do not play a major role; on the contrary, the embrittlement is mostly a structural or "size" effect. Na is predicted to be nearly as good an embrittler as Bi, whereas Ag does not embrittle the boundary in agreement with experiment. While we reject the prevailing view that "electronic" effects (i.e., charge transfer) are responsible for embrittlement, we do not exclude the role of chemistry. However numerical results show a striking equivalence between the alkali metal Na and the semi metal Bi, small differences being accounted for by their contrasting "size" and "softness" (defined here). In order to separate structural and chemical effects unambiguously if not uniquely, we model the embrittlement process by taking the system of grain boundary and free surfaces through a sequence of precisely defined gedanken processes; each of these representing a putative mechanism. We thereby identify three mechanisms of embrittlement by substitutional impurities, two of which survive in the case of embrittlement or cohesion enhancement by interstitials. Two of the three are purely structural and the third contains both structural and chemical elements that by their very nature cannot be further unravelled. We are able to take the systems we study through each of these stages by explicit computer simulations and assess the contribution of each to the nett reduction in intergranular cohesion. The conclusion we reach is that embrittlement by both Bi and Na is almost exclusively structural in origin; that is, the embrittlement is a size effect.Comment: 13 pages, 5 figures; Accepted in Phys. Rev.
    • …
    corecore