13 research outputs found

    On the class SI of J-contractive functions intertwining solutions of linear differential equations

    Get PDF
    In the PhD thesis of the second author under the supervision of the third author was defined the class SI of J-contractive functions, depending on a parameter and arising as transfer functions of overdetermined conservative 2D systems invariant in one direction. In this paper we extend and solve in the class SI, a number of problems originally set for the class SC of functions contractive in the open right-half plane, and unitary on the imaginary line with respect to some preassigned signature matrix J. The problems we consider include the Schur algorithm, the partial realization problem and the Nevanlinna-Pick interpolation problem. The arguments rely on a correspondence between elements in a given subclass of SI and elements in SC. Another important tool in the arguments is a new result pertaining to the classical tangential Schur algorithm.Comment: 46 page

    Multi-operator colligations and multivariate characteristic functions

    Full text link
    In the spectral theory of non-self-adjoint operators there is a well-known operation of product of operator colligations. Many similar operations appear in the theory of infinite-dimensional groups as multiplications of double cosets. We construct characteristic functions for such double cosets and get semigroups of matrix-valued functions in matrix balls.Comment: 15p

    Super-Radiant Dynamics, Doorways, and Resonances in Nuclei and Other Open Mesoscopic Systems

    Full text link
    The phenomenon of super-radiance (Dicke effect, coherent spontaneous radiation by a gas of atoms coupled through the common radiation field) is well known in quantum optics. The review discusses similar physics that emerges in open and marginally stable quantum many-body systems. In the presence of open decay channels, the intrinsic states are coupled through the continuum. At sufficiently strong continuum coupling, the spectrum of resonances undergoes the restructuring with segregation of very broad super-radiant states and trapping of remaining long-lived compound states. The appropriate formalism describing this phenomenon is based on the Feshbach projection method and effective non-Hermitian Hamiltonian. A broader generalization is related to the idea of doorway states connecting quantum states of different structure. The method is explained in detail and the examples of applications are given to nuclear, atomic and particle physics. The interrelation of the collective dynamics through continuum and possible intrinsic many-body chaos is studied, including universal mesoscopic conductance fluctuations. The theory serves as a natural framework for general description of a quantum signal transmission through an open mesoscopic system.Comment: 85 pages, 10 figure

    Higher cohomology of parabolic actions on certain homogeneous spaces

    Get PDF
    We show that for a parabolic R^d-action on a compact quotient of PSL(2,R)^d, the cohomologies in degrees 1 through d-1 trivialize, and we give the obstructions to solving the degree-d coboundary equation, along with bounds on Sobolev norms of primitives. In previous papers we have established these results for certain Anosov systems. The present work extends the methods of those papers to systems that are not Anosov. The main new idea is in Section 4, where we define special elements of representation spaces that allow us to modify the arguments from the previous papers. In Section 7 we discuss how one may generalize this strategy to R^d-systems coming from a product of Lie groups, like in the systems we have here
    corecore