139 research outputs found

    Field theory simulation of Abelian-Higgs cosmic string cusps

    Get PDF
    We have performed a lattice field theory simulation of cusps in Abelian-Higgs cosmic strings. The results are in accord with the theory that the portion of the strings which overlaps near the cusp is released as radiation. The radius of the string cores which must touch to produce the evaporation is approximately r=1r = 1 in natural units. In general, the modifications to the string shape due to the cusp may produce many cusps later in the evolution of a string loop, but these later cusps will be much smaller in magnitude and more closely resemble kinks.Comment: 9 pages, RevTeX, 13 figures with eps

    Supersymmetry and primordial black hole abundance constraints

    Get PDF
    We study the consequences of supersymmetry for primordial black hole (PBH) abundance constraints. PBHs with mass less than about 10^{11}g will emit supersymmetric particles when they evaporate. In most models of supersymmetry the lightest of these particles, the lightest supersymmetric particle (LSP), is stable and will hence survive to the present day. We calculate the limit on the initial abundance of PBHs from the requirement that the present day LSP density is less than the critical density. We apply this limit, along with those previously obtained from the effects of PBH evaporation on nucleosynthesis and the present day density of PBHs, to PBHs formed from the collpase of inflationary density perturbations, in the context of supersymmetric inflation models. If the reheat temperature after inflation is low, so as to avoid the overproduction of gravitinos and moduli, then the lightest PBHs which are produced in significant numbers will be evaporating around the present day and there are therefore no constraints from the effects of the evaporation products on nucleosynthesis or from the production of LSPs. We then examine models with a high reheat temperature and a subsequent period of thermal inflation. In these models avoiding the overproduction of LSPs limits the abundance of low mass PBHs which were previously unconstrained. Throughout we incorporate the production, at fixed time, of PBHs with a range of masses, which occurs when critical collapse is taken into account.Comment: 8 pages RevTeX file with 3 figures incorporated (uses RevTeX and epsf). Version to appear in Phys. Rev. D: minor change to calculation and added discussio

    Relativistic Viscous Fluid Description of Microscopic Black Hole Wind

    Full text link
    Microscopic black holes explode with their temperature varying inversely as their mass. Such explosions would lead to the highest temperatures in the present universe, all the way to the Planck energy. Whether or not a quasi-stationary shell of matter undergoing radial hydrodynamic expansion surrounds such black holes is been controversial. In this paper relativistic viscous fluid equations are applied to the problem. It is shown that a self-consistent picture emerges of a fluid just marginally kept in local thermal equilibrium; viscosity is a crucial element of the dynamics.Comment: 11 pages, revte

    NEUTRINOS FROM PRIMORDIAL BLACK HOLES

    Full text link
    The emission of particles from black holes created in the early Universe has detectable astrophysical consequences. The most stringent bound on their abundance has been obtained from the absence of a detectable diffuse flux of 100 MeV photons. Further scrutiny of these bounds is of interest as they, for instance, rule out primordial black holes as a dark matter candidate. We here point out that these bounds can, in principle, be improved by studying the diffuse cosmic neutrino flux. Measurements of near-vertical atmospheric neutrino fluxes in a region of low geomagnetic latitude can provide a competitive bound. The most favorable energy to detect a possible diffuse flux of primordial black hole origin is found to be a few MeV. We also show that measurements of the diffuse ντ\nu _\tau flux is the most promising to improve the existing bounds deduced from gamma-ray measurements. Neutrinos from individual black hole explosions can be detected in the GeV-TeV energy region. We find that the kilometer-scale detectors, recently proposed, are able to establish competitive bounds.Comment: 19 pages plus 9 uuencoded and compressed postscript figure

    High Temperature Matter and Gamma Ray Spectra from Microscopic Black Holes

    Full text link
    The relativistic viscous fluid equations describing the outflow of high temperature matter created via Hawking radiation from microscopic black holes are solved numerically for a realistic equation of state. We focus on black holes with initial temperatures greater than 100 GeV and lifetimes less than 6 days. The spectra of direct photons and photons from π0\pi^0 decay are calculated for energies greater than 1 GeV. We calculate the diffuse gamma ray spectrum from black holes distributed in our galactic halo. However, the most promising route for their observation is to search for point sources emitting gamma rays of ever-increasing energy.Comment: 33 pages, 13 figures, to be submitted to PR

    Investigation of Primordial Black Hole Bursts using Interplanetary Network Gamma-ray Bursts

    Full text link
    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating Primordial Black Holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to gamma-ray bursts using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 10^13-10^18 cm (7-10^5 AU) range, consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.Comment: Accepted to the Astrophysical Journal (9 Figures, 3 Tables

    Spectral Lags of Gamma-Ray Bursts from Primordial Black Hole (PBH) Evaporations

    Full text link
    Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. PBHs with an initial mass of 5.0 * 10^14 g should be expiring today with a burst of high energy particles. Evaporating PBHs in the solar neighborhood are candidate Gamma-Ray Bursts (GRBs) progenitors. We propose spectral lag, which is the temporal delay between the high energy photon pulse and the low energy photon pulse, as a possible method to detect PBH evaporation events with the Fermi Gamma-ray Space Telescope Observatory.Comment: 3 pages; Published in the proceedings of Huntsville 2008 symposium on GRBs; Indices in Equation 7 and 8 correcte

    Primordial black holes under the double inflationary power spectrum

    Get PDF
    Recently, it has been shown that the primordial black holes (PBHs) produced by near critical collapse in the expanding universe have a scaling mass relation similar to that of black holes produced in asymptotically flat spacetime. Distinct from PBHs formed with mass about the horizon mass (Type I), the PBHs with the scaling relation (Type II) can be created with a range of masses at a given formation time. In general, only the case in which the PBH formation is concentrated at one epoch has been considered. However, it is expected that PBH formation is possible over a broad range of epochs if the density fluctuation has a rather large amplitude and smooth scale dependence. In this paper, we study the PBH formation for both types assuming the power spectrum of double inflationary models in which the small scale fluctuations could have large amplitudes independent of the CMBR anisotropy. The mass spectrum of Type II PBHs is newly constructed without limiting the PBH formation period. The double inflationary power spectrum is assumed to be of double simple power-law which are smoothly connected. Under the assumed power spectrum, the accumulation of small PBHs formed at later times is important and the mass range is significantly broadened for both Types. The PBH mass spectra are far smoother than the observed MACHO spectrum due to our assumption of a smooth spectrum. In order to fit the observation, a more spiky spectrum is required.Comment: 7 pages including 2 figures, to be published in Phys. Rev.
    • …
    corecore