138 research outputs found

    In vitro antiproliferative activity of partially purified Trigona laeviceps propolis from Thailand on human cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancers are some of the leading causes of human deaths worldwide and their relative importance continues to increase. Since an increasing proportion of cancer patients are acquiring resistance to traditional chemotherapeutic agents, it is necessary to search for new compounds that provide suitable specific antiproliferative affects that can be developed as anticancer agents. Propolis from the stingless bee, <it>Trigona laeviceps</it>, is one potential interesting source that is widely available and cultivatable (as bee hives) in Thailand.</p> <p>Methods</p> <p>Propolis (90 g) was initially extracted by 95% (v/v) ethanol and then solvent partitioned by sequential extractions of the crude ethanolic extract with 40% (v/v) MeOH, CH<sub>2</sub>Cl<sub>2 </sub>and hexane. After solvent removal by evaporation, each extract was solvated in DMSO and assayed for antiproliferative activity against five cancer (Chago, KATO-III, SW620, BT474 and Hep-G2) and two normal (HS27 fibroblast and CH-liver) cell lines using the MTT assay. The cell viability (%) and IC<sub>50 </sub>values were calculated.</p> <p>Results</p> <p>The hexane extract provided the highest <it>in vitro </it>antiproliferative activity against the five tested cancer cell lines and the lowest cytotoxicity against the two normal cell lines. Further fractionation of the hexane fraction by quick column chromatography using eight solvents of increasing polarity for elution revealed the two fractions eluted with 30% and 100% (v/v) CH<sub>2</sub>Cl<sub>2 </sub>in hexane (30DCM and 100DCM, respectively) had a higher anti-proliferative activity. Further fractionation by size exclusion chromatography lead to four fractions for each of 30DCM and 100DCM, with the highest antiproliferative activity on cancer but not normal cell lines being observed in fraction# 3 of 30DCM (IC<sub>50 </sub>value of 4.09 - 14.7 μg/ml).</p> <p>Conclusions</p> <p><it>T. laeviceps </it>propolis was found to contain compound(s) with antiproliferative activity <it>in vitro </it>on cancer but not normal cell lines in tissue culture. The more enriched propolis fractions typically revealed a higher antiproliferative activity (lower IC<sub>50 </sub>value). Overall, propolis from Thailand may have the potential to serve as a template for future anticancer-drug development.</p

    Antibacterial mono- and sesquiterpene esters of benzoic acids from Iranian propolis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Propolis (bee glue) has been used as a remedy since ancient times. Propolis from unexplored regions attracts the attention of scientists in the search for new bioactive molecules.</p> <p>Results</p> <p>From Iranian propolis from the Isfahan province, five individual components were isolated: the prenylated coumarin suberosin <b>1</b>, and four terpene esters: tschimgin (bornyl <it>p</it>-hydroxybenzoate) <b>2</b>, tschimganin (bornyl vanillate) <b>3</b>, ferutinin (ferutinol <it>p</it>-hydroxybenzoate) <b>4, </b>and tefernin (ferutinol vanillate) <b>5</b>. All of them were found for the first time in propolis. Compounds <b>2 </b>- <b>5 </b>demonstrated activity against <it>Staphylococcus aureus</it>.</p> <p>Conclusions</p> <p>The results of the present study are consistent with the idea that propolis from unexplored regions is a promising source of biologically active compounds.</p

    Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Native bees of the tribe Meliponini produce a distinct kind of propolis called geopropolis. Although many pharmacological activities of propolis have already been demonstrated, little is known about geopropolis, particularly regarding its antimicrobial activity against oral pathogens. The present study aimed at investigating the antimicrobial activity of <it>M. fasciculata </it>geopropolis against oral pathogens, its effects on <it>S. mutans </it>biofilms, and the chemical contents of the extracts. A gel prepared with a geopropolis extract was also analyzed for its activity on <it>S. mutans </it>and its immunotoxicological potential.</p> <p>Methods</p> <p>Antimicrobial activities of three hydroalcoholic extracts (HAEs) of geopropolis, and hexane and chloroform fractions of one extract, were evaluated using the agar diffusion method and the broth dilution technique. Ethanol (70%, v/v) and chlorhexidine (0.12%, w/w) were used as negative and positive controls, respectively. Total phenol and flavonoid concentrations were assayed by spectrophotometry. Immunotoxicity was evaluated in mice by topical application in the oral cavity followed by quantification of biochemical and immunological parameters, and macro-microscopic analysis of animal organs.</p> <p>Results</p> <p>Two extracts, HAE-2 and HAE-3, showed inhibition zones ranging from 9 to 13 mm in diameter for <it>S. mutans </it>and <it>C. albicans</it>, but presented no activity against <it>L</it>. <it>acidophilus</it>. The MBCs for HAE-2 and HAE-3 against <it>S. mutans </it>were 6.25 mg/mL and 12.5 mg/mL, respectively. HAE-2 was fractionated, and its chloroform fraction had an MBC of 14.57 mg/mL. HAE-2 also exhibited bactericidal effects on <it>S. mutans </it>biofilms after 3 h of treatment. Significant differences (p < 0.05) in total phenol and flavonoid concentrations were observed among the samples. Signs toxic effects were not observed after application of the geopropolis-based gel, but an increase in the production of IL-4 and IL-10, anti-inflammatory cytokines, was detected.</p> <p>Conclusions</p> <p>In summary, geopropolis produced by <it>M. fasciculata </it>can exert antimicrobial action against <it>S. mutans </it>and <it>C. albicans</it>, with significant inhibitory activity against <it>S. mutans </it>biofilms. The extract with the highest flavonoid concentration, HAE-2, presented the highest antimicrobial activity. In addition, a geopropolis-based gel is not toxic in an animal model and displays anti-inflammatory effect.</p

    Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro

    Get PDF
    Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds.Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death. METHODS: Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits. RESULTS: All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production. CONCLUSION: Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer.We thank the Portuguese Science and Technology Foundation (FCT) for VMG fellowship (ref. SFRH/BI/33503/2008). The authors thank Mr. Antonio Marques from Frutercoop - Azores, who kindly collected and provided the propolis sample for the study

    Analytical methods applied to diverse types of Brazilian propolis

    Get PDF
    Propolis is a bee product, composed mainly of plant resins and beeswax, therefore its chemical composition varies due to the geographic and plant origins of these resins, as well as the species of bee. Brazil is an important supplier of propolis on the world market and, although green colored propolis from the southeast is the most known and studied, several other types of propolis from Apis mellifera and native stingless bees (also called cerumen) can be found. Propolis is usually consumed as an extract, so the type of solvent and extractive procedures employed further affect its composition. Methods used for the extraction; analysis the percentage of resins, wax and insoluble material in crude propolis; determination of phenolic, flavonoid, amino acid and heavy metal contents are reviewed herein. Different chromatographic methods applied to the separation, identification and quantification of Brazilian propolis components and their relative strengths are discussed; as well as direct insertion mass spectrometry fingerprinting

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given
    corecore