6 research outputs found
Wavelets operational methods for fractional differential equations and systems of fractional differential equations
In this thesis, new and effective operational methods based on polynomials and
wavelets for the solutions of FDEs and systems of FDEs are developed. In particular
we study one of the important polynomial that belongs to the Appell family of
polynomials, namely, Genocchi polynomial. This polynomial has certain great
advantages based on which an effective and simple operational matrix of derivative
was first derived and applied together with collocation method to solve some singular
second order differential equations of Emden-Fowler type, a class of generalized
Pantograph equations and Delay differential systems. A new operational matrix of
fractional order derivative and integration based on this polynomial was also
developed and used together with collocation method to solve FDEs, systems of
FDEs and fractional order delay differential equations. Error bound for some of the
considered problems is also shown and proved. Further, a wavelet bases based on
Genocchi polynomials is also constructed, its operational matrix of fractional order
derivative is derived and used for the solutions of FDEs and systems of FDEs. A
novel approach for obtaining operational matrices of fractional derivative based on
Legendre and Chebyshev wavelets is developed, where, the wavelets are first
transformed into corresponding shifted polynomials and the transformation matrices
are formed and used together with the polynomials operational matrices of fractional
derivatives to obtain the wavelets operational matrix. These new operational matrices
are used together with spectral Tau and collocation methods to solve FDEs and
systems of FDEs
Assessment of Sewage Molecular Markers in Port Dickson Coast and Kim Kim River with Sediment Linear Alkylbenzenes
The present study aimed to determine linear alkylbenzenes (LABs) concentrations as organic molecular marker for sewage pollution in the sediment samples collected from Coast of Port Dickson and Kim Kim River, Peninsular Malaysia. The adverse effects of anthropogenic inputs into the
rivers and coastal environment could be detected by molecular organic markers such as LABs. The sediments were processed; their sources were identified and tested by gas chromatography-mass spectrometry (GC-MS). The significance of the differences among sampling stations for LAB concentrations and distribution at p < 0.05 was performed by analysis of variance and Post Hoc Tests, LSD procedures (ANOVA) and Pearson correlation coefficient. LABs indices which include internal to external (I/E) congeners, long to short chains L/S and homologs C13/C12 were used to identify the sewage treatment and degradation levels. Results of this study are statistically uncovered that the range of RLABs concentration in the investigated
locations was between 112.0; 88.3 and 256.0; 119.0 ngļæ½g1 dw, respectively. There was significant difference (p < 0.05) of LAB homologs with high percentage of C13-LAB homologs along sampling locations. The calculated LAB ratios (I/E) were within the range between 2.0; 1.7 and 4.1, 2.0, demonstrated that, the treated effluents from primary and secondary sources were discharged to the study areas. The degradation of LABs was 40ā64% and 34ā38% in the studied locations. The findings of this study suggested the powerfully indicators of LABs in tracing anthropogenic sewage contamination and the necessity of continuing wastewater treatment system
improvemen
Chromatographic Separation, Total Determination and Chemical Speciation of Mercury in Environmental Water Samples Using 4-(2-Thiazolylazo) Resorcinol-Based Polyurethane Foam Sorbent-Packed Column
A simple method has been developed for quantitative retention of traces of mercury(II) ions from aqueous media using polyurethane foams (PUFs) loaded with 4-(2-thiazolylazo) resorcinol (TAR). The kinetics and thermodynamics of the sorption of mercury(II) ions onto PUFs were studied. The sorption of mercury(II) ions onto PUF follows a first-order rate equation with kĀ =Ā 0.176Ā Ā±Ā 0.010Ā minā1. The negative values of ĪH and ĪS may be interpreted as the exothermic chemisorption process and indicative of a faster chemisorption onto the active sites of the sorbent. The sorption data followed Langmuir, Freundlich and Dubinin-Radushkevich (DāR) isotherm models. The D-R parameters Ī², KDR and E were 0.329Ā mol2Ā kJā2, 0.001Ā Ī¼molĀ gā1 and 1.23Ā Ā±Ā 0.07Ā kJ/mol for the TAR-loaded PUFs, respectively. An acceptable retention and recovery (99.6Ā Ā±Ā 1.1%) of mercury(II) ions in water at ā¤10Ā ppb by the TAR-treated PUFs packed columns were achieved. A retention mechanism, involving absorption related to āsolvent extractionā and an āadded componentā for surface adsorption, was suggested for the retention of mercury(II) ions by the used solid phase extractor. The performance of TAR-immobilized PUFs packed column in terms of the number (N), the height equivalent to a theoretical plate (HETP), the breakthrough and critical capacities of mercury(II) ion uptake by the sorbent packed column were found to be 50.0Ā Ā±Ā 1.0, 1.01Ā Ā±Ā 0.02Ā mm, 8.75 and 13.75Ā mg/g, respectively, at 5Ā mL/min flow rate
Assessment of Sewage Molecular Markers in Port Dickson Coast and Kim Kim River with Sediment Linear Alkylbenzenes
The present study aimed to determine linear alkylbenzenes (LABs) concentrations as organic molecular marker for sewage pollution in the sediment samples collected from Coast of Port Dickson and Kim Kim River, Peninsular Malaysia. The adverse effects of anthropogenic inputs into the rivers and coastal environment could be detected by molecular organic markers such as LABs. The sediments were processed; their sources were identified and tested by gas chromatography-mass spectrometry (GC-MS). The significance of the differences among sampling stations for LAB concentrations and distribution at p < 0.05 was performed by analysis of variance and Post Hoc Tests, LSD procedures (ANOVA) and Pearson correlation coefficient. LABs indices which include internal to external (I/E) congeners, long to short chains L/S and homologs C13/C12 were used to identify the sewage treatment and degradation levels. Results of this study are statistically uncovered that the range of RLABs concentration in the investigated
locations was between 112.0; 88.3 and 256.0; 119.0 ngļæ½g1 dw, respectively. There was significant difference (p < 0.05) of LAB homologs with high percentage of C13-LAB homologs along sampling locations. The calculated LAB ratios (I/E) were within the range between 2.0; 1.7 and 4.1, 2.0, demonstrated that, the treated effluents from primary and secondary sources were discharged to the study areas. The degradation of LABs was 40ā64% and 34ā38% in the studied locations. The findings of this study suggested the powerfully indicators of LABs in tracing anthropogenic sewage contamination and the necessity of continuing wastewater treatment system
improvement
Green Synthetized Selenium Nanoparticles Using <i>Syzygium aromaticum</i> (Clove) Extract Reduce Pentylenetetrazol-Induced Epilepsy and Associated Cortical Damage in Rats
We aimed to investigate the potential anticonvulsant effect of green synthetized selenium nanoparticles (SeNPs) using Syzygium aromaticum extract (SAE) (SAE-SeNPs) against epileptic seizures and cortical damage induced by pentylenetetrazole (PTZ) injection in rats and its mechanism. A total of 84 rats were divided into six groups; control, PTZ-exposed group, SAE + PTZ-treated group, sodium selenite (Na2SeO3) + PTZ-treated group, SAE-SeNPs + PTZ-treated group, and diazepam + PTZ-treated group. SAE-SeNPs significantly increase (p p p p < 0.05) the PTZ-induced changes in the neurotransmitter norepinephrine level and acetylcholinesterase enzymatic activity. These data concluded the anticonvulsant activity of SAE-SeNPs via their antioxidant, anti-inflammatory, and anti-apoptotic effects, along with their ability to modulate neurotransmitters