69 research outputs found

    Attractive Central Potential in the SU(3) Skyrme Model

    Full text link
    The interaction between the hyperon and the nucleon is investigated in the SU(3) Skyrme model. The static potential, which is expanded in terms of the modified SU(3) rotation matrices, is obtained for several orientations with the Atiyah-Manton ansatz. The interaction is calculated for the NN, \LambdaN, and \SigmaN systems. The medium-range attraction of the central potential between \Lambda and N is obtained by considering the \Lambda-\Sigma mixing through the intermediate state.Comment: 16 pages, 9 embedded PS figures, ReVTeX, to appear in Phys. Rev.

    Skyrmions and the Nuclear Force

    Full text link
    The derivation of the nucleon-nucleon force from the Skyrme model is reexamined. Starting from previous results for the potential energy of quasistatic solutions, we show that a calculation using the Born-Oppenheimer approximation properly taking into account the mixing of nucleon resonances, leads to substantial central attraction. We obtain a potential that is in qualitative agreement with phenomenological potentials. We also study the non-adiabatic corrections, such as the velocity dependent transition potentials, and discuss their importance.Comment: 24 pages, UPR-0124M

    Small Heat Shock Proteins Potentiate Amyloid Dissolution by Protein Disaggregases from Yeast and Humans

    Get PDF
    The authors define how small heat-shock proteins synergize to regulate the assembly and disassembly of a beneficial prion, and then they exploit this knowledge to identify the human amyloid depolymerase

    Optical Trapping with High Forces Reveals Unexpected Behaviors of Prion Fibrils

    Get PDF
    Amyloid fibrils are important in diverse cellular functions, feature in many human diseases and have potential applications in nanotechnology. Here we describe methods that combine optical trapping and fluorescent imaging to characterize the forces that govern the integrity of amyloid fibrils formed by a yeast prion protein. A crucial advance was to use the self-templating properties of amyloidogenic proteins to tether prion fibrils, enabling their manipulation in the optical trap. At normal pulling forces the fibrils were impervious to disruption. At much higher forces (up to 250 pN), discontinuities occurred in force-extension traces before fibril rupture. Experiments with selective amyloid-disrupting agents and mutations demonstrated that such discontinuities were caused by the unfolding of individual subdomains. Thus, our results reveal unusually strong noncovalent intermolecular contacts that maintain fibril integrity even when individual monomers partially unfold and extend fibril length.National Institutes of Health (U.S.) (Grant GM025874)National Science Foundation (U.S.). CAREER (Award 0643745

    Dissociation of Infectivity from Seeding Ability in Prions with Alternate Docking Mechanism

    Get PDF
    Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrPSc, suggesting that these domains of cellular prion protein (PrPC) serve as docking sites for PrPSc during prion propagation. To examine the role of polybasic domains in the context of full-length PrPC, we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ∼5 rounds of sPMCA, PrPSc molecules lacking the central polybasic domain (Ξ”C) were formed. Surprisingly, in contrast to wild-type prions, Ξ”C-PrPSc prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrPSc molecules. Remarkably, Ξ”C-PrPSc and other polybasic domain PrPSc molecules displayed diminished or absent biological infectivity relative to wild-type PrPSc, despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, Ξ”C-PrPSc prions interact with PrPC molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrPSc propagation. Furthermore, polybasic domain deficient PrPSc molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrPSc molecules may not depend on a single stereotypic mechanism, but that normal PrPC/PrPSc interaction through polybasic domains may be required to generate prion infectivity

    Modulation of AΞ²(42 )low-n oligomerization using a novel yeast reporter system

    Get PDF
    BACKGROUND: While traditional models of Alzheimer's disease focused on large fibrillar deposits of the AΞ²(42 )amyloid peptide in the brain, recent work suggests that the major pathogenic effects may be attributed to SDS-stable oligomers of AΞ²(42). These AΞ²(42 )oligomers represent a rational target for therapeutic intervention, yet factors governing their assembly are poorly understood. RESULTS: We describe a new yeast model system focused on the initial stages of AΞ²(42 )oligomerization. We show that the activity of a fusion of AΞ²(42 )to a reporter protein is compromised in yeast by the formation of SDS-stable low-n oligomers. These oligomers are reminiscent of the low-n oligomers formed by the AΞ²(42 )peptide in vitro, in mammalian cell culture, and in the human brain. Point mutations previously shown to inhibit AΞ²(42 )aggregation in vitro, were made in the AΞ²(42 )portion of the fusion protein. These mutations both inhibited oligomerization and restored activity to the fusion protein. Using this model system, we found that oligomerization of the fusion protein is stimulated by millimolar concentrations of the yeast prion curing agent guanidine. Surprisingly, deletion of the chaperone Hsp104 (a known target for guanidine) inhibited oligomerization of the fusion protein. Furthermore, we demonstrate that Hsp104 interacts with the AΞ²(42)-fusion protein and appears to protect it from disaggregation and degradation. CONCLUSION: Previous models of Alzheimer's disease focused on unravelling compounds that inhibit fibrillization of AΞ²(42), i.e. the last step of AΞ²(42 )assembly. However, inhibition of fibrillization may lead to the accumulation of toxic oligomers of AΞ²(42). The model described here can be used to search for and test proteinacious or chemical compounds for their ability to interfere with the initial steps of AΞ²(42 )oligomerization. Our findings suggest that yeast contain guanidine-sensitive factor(s) that reduce the amount of low-n oligomers of AΞ²(42). As many yeast proteins have human homologs, identification of these factors may help to uncover homologous proteins that affect AΞ²(42 )oligomerization in mammals

    Prion Formation and Polyglutamine Aggregation Are Controlled by Two Classes of Genes

    Get PDF
    Prions are self-perpetuating aggregated proteins that are not limited to mammalian systems but also exist in lower eukaryotes including yeast. While much work has focused around chaperones involved in prion maintenance, including Hsp104, little is known about factors involved in the appearance of prions. De novo appearance of the [PSI+] prion, which is the aggregated form of the Sup35 protein, is dramatically enhanced by transient overexpression of SUP35 in the presence of the prion form of the Rnq1 protein, [PIN+]. When fused to GFP and overexpressed in [psβˆ’] [PIN+] cells, Sup35 forms fluorescent rings, and cells with these rings bud off [PSI+] daughters. We investigated the effects of over 400 gene deletions on this de novo induction of [PSI+]. Two classes of gene deletions were identified. Class I deletions (bug1Ξ”, bem1Ξ”, arf1Ξ”, and hog1Ξ”) reduced the efficiency of [PSI+] induction, but formed rings normally. Class II deletions (las17Ξ”, vps5Ξ”, and sac6Ξ”) inhibited both [PSI+] induction and ring formation. Furthermore, class II deletions reduced, while class I deletions enhanced, toxicity associated with the expanded glutamine repeats of the huntingtin protein exon 1 that causes Huntington's disease. This suggests that prion formation and polyglutamine aggregation involve a multi-phase process that can be inhibited at different steps.National Institutes of Health (U.S.) (grant GM56350)National Institutes of Health (U.S.) (NSRA F32 postdoctoral fellowship GM072340)National Institutes of Health (U.S.) (grant GM25874)Howard Hughes Medical Institut

    Distinct Type of Transmission Barrier Revealed by Study of Multiple Prion Determinants of Rnq1

    Get PDF
    Prions are self-propagating protein conformations. Transmission of the prion state between non-identical proteins, e.g. between homologous proteins from different species, is frequently inefficient. Transmission barriers are attributed to sequence differences in prion proteins, but their underlying mechanisms are not clear. Here we use a yeast Rnq1/[PIN+]-based experimental system to explore the nature of transmission barriers. [PIN+], the prion form of Rnq1, is common in wild and laboratory yeast strains, where it facilitates the appearance of other prions. Rnq1's prion domain carries four discrete QN-rich regions. We start by showing that Rnq1 encompasses multiple prion determinants that can independently drive amyloid formation in vitro and transmit the [PIN+] prion state in vivo. Subsequent analysis of [PIN+] transmission between Rnq1 fragments with different sets of prion determinants established that (i) one common QN-rich region is required and usually sufficient for the transmission; (ii) despite identical sequences of the common QNs, such transmissions are impeded by barriers of different strength. Existence of transmission barriers in the absence of amino acid mismatches in transmitting regions indicates that in complex prion domains multiple prion determinants act cooperatively to attain the final prion conformation, and reveals transmission barriers determined by this cooperative fold
    • …
    corecore