20 research outputs found

    Numerically improved computational scheme for the optical conductivity tensor in layered systems

    Full text link
    The contour integration technique applied to calculate the optical conductivity tensor at finite temperatures in the case of layered systems within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker band structure method is improved from the computational point of view by applying the Gauss-Konrod quadrature for the integrals along the different parts of the contour and by designing a cumulative special points scheme for two-dimensional Brillouin zone integrals corresponding to cubic systems.Comment: 17 pages, LaTeX + 4 figures (Encapsulated PostScript), submitted to J. Phys.: Condensed Matter (19 Sept. 2000

    First principles calculation of uniaxial magnetic anisotropy and magnetostriction in strained CMR films

    Full text link
    We performed first - principles relativistic full-potential linearized augmented plane wave calculations for strained tetragonal ferromagnetic La(Ba)MnO3_3 with an assumed experimental structure of thin strained tetragonal La0.67_{0.67}Ca0.33_{0.33}MnO3_3 (LCMO) films grown on SrTiO3_3[001] and LaAlO3_3[001] substrates. The calculated uniaxial magnetic anisotropy energy (MAE) values, are in good quantitative agreement with experiment for LCMO films on SrTiO3_3 substrate. We also analyze the applicability of linear magnetoelastic theory for describing the stain dependence of MAE, and estimate magnetostriction coefficient λ001\lambda_{001}.Comment: Talk given at APS99 Meeting, Atlanta, 199

    Electron-correlation effects in appearance-potential spectra of Ni

    Full text link
    Spin-resolved and temperature-dependent appearance-potential spectra of ferromagnetic Nickel are measured and analyzed theoretically. The Lander self-convolution model which relates the line shape to the unoccupied part of the local density of states turns out to be insufficient. Electron correlations and orbitally resolved transition-matrix elements are shown to be essential for a quantitative agreement between experiment and theory.Comment: LaTeX, 6 pages, 2 eps figures included, Phys. Rev. B (in press

    Theory of Spin-Resolved Auger-Electron Spectroscopy from Ferromagnetic 3d-Transition Metals

    Full text link
    CVV Auger electron spectra are calculated for a multi-band Hubbard model including correlations among the valence electrons as well as correlations between core and valence electrons. The interest is focused on the ferromagnetic 3d-transition metals. The Auger line shape is calculated from a three-particle Green function. A realistic one-particle input is taken from tight-binding band-structure calculations. Within a diagrammatic approach we can distinguish between the \textit{direct} correlations among those electrons participating in the Auger process and the \textit{indirect} correlations in the rest system. The indirect correlations are treated within second-order perturbation theory for the self-energy. The direct correlations are treated using the valence-valence ladder approximation and the first-order perturbation theory with respect to valence-valence and core-valence interactions. The theory is evaluated numerically for ferromagnetic Ni. We discuss the spin-resolved quasi-particle band structure and the Auger spectra and investigate the influence of the core hole.Comment: LaTeX, 12 pages, 8 eps figures included, Phys. Rev. B (in press

    Nanoscopic Tunneling Contacts on Mesoscopic Multiprobe Conductors

    Full text link
    We derive Bardeen-like expressions for the transmission probabilities between two multi-probe mesoscopic conductors coupled by a weak tunneling contact. We emphasize especially the dual role of a weak coupling contact as a current source and sink and analyze the magnetic field symmetry. In the limit of a point-like tunneling contact the transmission probability becomes a product of local, partial density of states of the two mesoscopic conductors. We present expressions for the partial density of states in terms of functional derivatives of the scattering matrix with respect to the local potential and in terms of wave functions. We discuss voltage measurements and resistance measurements in the transport state of conductors. We illustrate the theory for the simple case of a scatterer in an otherwise perfect wire. In particular, we investigate the development of the Hall-resistance as measured with weak coupling probes.Comment: 10 pages, 5 figures, revte

    Optical pump rectification emission: route to terahertz free-standing surface potential diagnostics

    Get PDF
    We introduce a method for diagnosing the electric surface potential of a semiconductor based on THz surface generation. In our scheme, that we name Optical Pump Rectification Emission, a THz field is generated directly on the surface via surface optical rectification of an ultrashort pulse after which the DC surface potential is screened with a second optical pump pulse. As the THz generation directly relates to the surface potential arising from the surface states, we can then observe the temporal dynamics of the static surface field induced by the screening effect of the photo-carriers. Such an approach is potentially insensitive to bulk carrier dynamics and does not require special illumination geometries
    corecore