743 research outputs found

    Sustainability, stakeholders and business. Editorial

    Get PDF
    Over the past 20 years, there has been an increasing attention on the drivers of value in organizations. Both the strategic management literature and practice have remarked the importance for managers to be aware of the impact of firm activities, products and services on either the external and internal environment and, more generally, on all firm stakeholders. The emergence of the notions of “sustainable development” and “sustainability” reflects a profound change in global thinking, which forces firms to move beyond trade-offs between business and society

    Exactly solvable model with two conductor-insulator transitions driven by impurities

    Full text link
    We present an exact analysis of two conductor-insulator transitions in the random graph model. The average connectivity is related to the concentration of impurities. The adjacency matrix of a large random graph is used as a hopping Hamiltonian. Its spectrum has a delta peak at zero energy. Our analysis is based on an explicit expression for the height of this peak, and a detailed description of the localized eigenvectors and of their contribution to the peak. Starting from the low connectivity (high impurity density) regime, one encounters an insulator-conductor transition for average connectivity 1.421529... and a conductor-insulator transition for average connectivity 3.154985.... We explain the spectral singularity at average connectivity e=2.718281... and relate it to another enumerative problem in random graph theory, the minimal vertex cover problem.Comment: 4 pages revtex, 2 fig.eps [v2: new title, changed intro, reorganized text

    The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics

    Full text link
    The asymmetric simple exclusion process (ASEP) plays the role of a paradigm in non-equilibrium statistical mechanics. We review exact results for the ASEP obtained by Bethe ansatz and put emphasis on the algebraic properties of this model. The Bethe equations for the eigenvalues of the Markov matrix of the ASEP are derived from the algebraic Bethe ansatz. Using these equations we explain how to calculate the spectral gap of the model and how global spectral properties such as the existence of multiplets can be predicted. An extension of the Bethe ansatz leads to an analytic expression for the large deviation function of the current in the ASEP that satisfies the Gallavotti-Cohen relation. Finally, we describe some variants of the ASEP that are also solvable by Bethe ansatz. Keywords: ASEP, integrable models, Bethe ansatz, large deviations.Comment: 24 pages, 5 figures, published in the "special issue on recent advances in low-dimensional quantum field theories", P. Dorey, G. Dunne and J. Feinberg editor

    Power Spectra of a Constrained Totally Asymmetric Simple Exclusion Process

    Full text link
    To synthesize proteins in a cell, an mRNA has to work with a finite pool of ribosomes. When this constraint is included in the modeling by a totally asymmetric simple exclusion process (TASEP), non-trivial consequences emerge. Here, we consider its effects on the power spectrum of the total occupancy, through Monte Carlo simulations and analytical methods. New features, such as dramatic suppressions at low frequencies, are discovered. We formulate a theory based on a linearized Langevin equation with discrete space and time. The good agreement between its predictions and simulation results provides some insight into the effects of finite resoures on a TASEP.Comment: 4 pages, 2 figures v2: formatting change

    Asymmetric exclusion model with several kinds of impurities

    Full text link
    We formulate a new integrable asymmetric exclusion process with N1=0,1,2,...N-1=0,1,2,... kinds of impurities and with hierarchically ordered dynamics. The model we proposed displays the full spectrum of the simple asymmetric exclusion model plus new levels. The first excited state belongs to these new levels and displays unusual scaling exponents. We conjecture that, while the simple asymmetric exclusion process without impurities belongs to the KPZ universality class with dynamical exponent 3/2, our model has a scaling exponent 3/2+N13/2+N-1. In order to check the conjecture, we solve numerically the Bethe equation with N=3 and N=4 for the totally asymmetric diffusion and found the dynamical exponents 7/2 and 9/2 in these cases.Comment: to appear in JSTA

    Distribution of exchange energy in a bond-alternating S=1 quantum spin chain

    Full text link
    The quasi-one-dimensional bond-alternating S=1 quantum antiferromagnet NTENP is studied by single crystal inelastic neutron scattering. Parameters of the measured dispersion relation for magnetic excitations are compared to existing numerical results and used to determine the magnitude of bond-strength alternation. The measured neutron scattering intensities are also analyzed using the 1st-moment sum rules for the magnetic dynamic structure factor, to directly determine the modulation of ground state exchange energies. These independently determined modulation parameters characterize the level of spin dimerization in NTENP. First-principle DMRG calculations are used to study the relation between these two quantities.Comment: 10 pages, 10 figure

    Magnetic Field Behaviour of a Haldane Gap Antiferromagnet

    Full text link
    We investigate the magnetic field behaviour of an antiferromagnetic Heisenberg spin-1 chain with the most general single-ion anisotropy. We discuss the regime in which the magnetic field is below the transition value. The splitting of the Haldane triplet is obtained as a function of a field applied in an arbitrary orientation by means of a Lancz\H os exact diagonalization of chains of up to 16 spins. Our results are nicely summarized in terms of a first-order perturbation theory. We explain various level crossings that occur by the existence of discrete symmetries. A discussion is given of the electron spin resonance and neutron scattering experiments on the compound Ni(C2_2H8_8N2_2)2_2NO2_2ClO4_4 (NENP).Comment: 18 pages and 6 figs not included available by ftp, plain TeX, SPhT/93-04

    Feedback and Fluctuations in a Totally Asymmetric Simple Exclusion Process with Finite Resources

    Full text link
    We revisit a totally asymmetric simple exclusion process (TASEP) with open boundaries and a global constraint on the total number of particles [Adams, et. al. 2008 J. Stat. Mech. P06009]. In this model, the entry rate of particles into the lattice depends on the number available in the reservoir. Thus, the total occupation on the lattice feeds back into its filling process. Although a simple domain wall theory provided reasonably good predictions for Monte Carlo simulation results for certain quantities, it did not account for the fluctuations of this feedback. We generalize the previous study and find dramatically improved predictions for, e.g., the density profile on the lattice and provide a better understanding of the phenomenon of "shock localization."Comment: 11 pages, 3 figures, v2: Minor change

    Time-Dependent Density Functional Theory for Driven Lattice Gas Systems with Interactions

    Full text link
    We present a new method to describe the kinetics of driven lattice gases with particle-particle interactions beyond hard-core exclusions. The method is based on the time-dependent density functional theory for lattice systems and allows one to set up closed evolution equations for mean site occupation numbers in a systematic manner. Application of the method to a totally asymmetric site exclusion process with nearest-neighbor interactions yields predictions for the current-density relation in the bulk, the phase diagram of non-equilibrium steady states and the time evolution of density profiles that are in good agreement with results from kinetic Monte Carlo simulations.Comment: 11 pages, 3 figure
    corecore