837 research outputs found

    Magnon-polaron and Spin-polaron Signatures in the Specific Heat and Electrical Resistivity of La0.6Y0.1Ca0.3MnO3La_{0.6}Y_{0.1}Ca_{0.3}MnO_3 in Zero Magnetic Field, and the Effect of MnOMnMn-O-Mn Bond Environment

    Full text link
    La0.6Y0.1Ca0.3MnO3La_{0.6}Y_{0.1}Ca_{0.3}MnO_{3}, an ABO3ABO_{3} perovskite manganite oxide, exhibits a non trivial behavior in the vicinity of the sharp peak found in the resistivity ρ\rho as a function of temperature TT in zero magnetic field. The various features seen on dρ/dTd\rho/dT are discussed in terms of competing phase transitions. They are related to the MnOMnMn-O-Mn bond environment depending on the content of the AA crystallographic site. A Ginzburg-Landau type theory is presented for incorporating concurrent phase transitions. The specific heat CC of such a compound is also examined from 50 till 200 K. A log-log analysis indicates different regimes. In the low temperature conducting ferromagnetic phase, a collective magnon signature (CT3/2C \simeq T^{3/2}) is found as for what are called magnon-polaron excitations. A CT2/3C \simeq T^{2/3} law is found at high temperature and discussed in terms of the fractal dimension of the conducting network of the weakly conducting (so-called insulating) phase and Orbach estimate of the excitation spectral behaviors. The need of considering both independent spin scattering and collective spin scattering is thus emphasized. The report indicates a remarkable agreement for the Fisher-Langer formula, i.e. CC \sim dρ/dTd\rho/dT at second order phase transitions. Within the Attfield model, we find an inverse square root relationship between the critical temperature(s) and the total local MnOMnMn-O-Mn strain.Comment: 19 pages, 5 figures; to be published in Phys Rev

    Degradation of LaMnO{3-y} surface layer in LaMnO{3-y}/ metal interface

    Full text link
    We report electrical measurements showing the degradation processes of LaMnO3y_{3-y} (LaMnO) in LaMnO/normal metal interface in both point contact and planar-type junctions. Immediately after the preparation of the interface, the degradation process was followed by measuring the evolution of the junction resistance versus time. This process is characterized by the appearance of a second maximum in the resistance vs. temperature (R-T) dependence at temperatures lower than the Curie temperature Tc_c, at which the metal-insulator transition occurs in the bulk. These effects are explained in terms of the formation of a depleted interface layer in LaMnO caused by an out-diffusion of oxygen from the manganite surface to the normal metal. This assumption is confirmed by XPS measurement. Similar results on LaSrMnO3y_{3-y} interfaces are also obtained.Comment: 4 pages, 3 figures, accepted for publication in Appl. Phys. Lett.(2002

    An updated suprageneric classification of planktic foraminifera after growing evidence of multiple benthic-planktic transitions

    Get PDF
    Planktic foraminifera have traditionally been classified within a single order: Globigerinida. However, recent phylogenetic studies, both molecular and stratophenetic, are evidencing the polyphyletic origin of planktic foraminifera from several benthic ancestors. At least four independent events of benthic-planktic transition have been identified. One of them occurred after the Cretaceous–Paleogene boundary mass extinction, originating the first Cenozoic globigerinids. Another three occurred in the Mesozoic, originating three groups of planktic foraminifera (globotruncanids, heterohelicids and guembelitriids) not related phylogenetically to each other or to current globigerinids. These findings make it necessary to carry out an exhaustive review of their suprageneric systematics, mainly at the order level. Here we propose a new, more natural classification, grouping them into four orders: Globigerinida, Heterohelicida, Globotruncanida n. ord., and Guembelitriida n. ord. To better reflect the diversity and phylogeny of planktic foraminifera, we have also defined two new superfamilies: Abathomphaloidea n. superfam. and Parvularugoglobigerinoidea n. superfam., and one new family: Parvularuglobigerinidae n. fam

    New biochronological scales of planktic foraminifera for the early danian based on high-resolution biostratigraphy

    Get PDF
    After the Cretaceous/Paleogene boundary (KPB) catastrophic mass extinction event, an explosive evolutionary radiation of planktic foraminifera took place in consequence of the prompt occupation of empty niches. The rapid evolution of new species makes it possible to establish high-resolution biozonations in the lower Danian. We propose two biostratigraphic scales for low-to-middle latitudes spanning the first two million years of the Danian. The first is based on qualitative data and includes four biozones: the Guembelitria cretacea Zone (Dan1), the Parvularugoglobigerina longiapertura Zone (Dan2), the Parvularugoglobigerina eugubina Zone (Dan3), and the Parasubbotina pseudobulloides Zone (Dan4). The latter two are divided into several sub-biozones: the Parvularu-goglobigerina sabina Subzone (Dan3a) and the Eoglobigerina simplicissima Subzone (Dan3b) for the Pv. eugubina Zone, and the Praemurica taurica Subzone (Dan4a), the Subbotina triloculinoides Subzone (Dan4b), and the Globanomalina compressa Subzone (Dan4c) for the P. pseudobulloides Zone. The second scale is based on quantitative data and includes three acme-zones (abundance zones): the Guembelitria Acme-zone (DanAZ1), the Parvularugoglobigerina-Palaeoglobigerina Acme-zone (DanAZ2), and the Woodringina-Chiloguembelina Acme-zone (DanAZ3). Both biozonations are based on high-resolution samplings of the most continuous sections of the lower Danian worldwide and have been calibrated with recent magnetochronological and astrochronological dating

    Revalidation of the genus Chiloguembelitria Hofker: Implications for the evolution of early Danian planktonic foraminifera

    Get PDF
    Guembelitria is the only planktonic foraminiferal genus whose survival from the mass extinction event of the Cretaceous/Paleogene (K/Pg) boundary has been clearly proven. The evolution of Guembelitria after the K/Pg boundary led to the appearance of two guembelitriid lineages in the early Danian: one biserial, represented by Woodringina and culminating in Chiloguembelina, and the other trochospiral, represented by Trochoguembelitria and culminating in Globoconusa. We have re-examined the genus Chiloguembelitria, another guembelitriid descended from Guembelitria and whose taxonomic validity had been questioned, it being considered a junior synonym of the latter. Nevertheless, Chiloguembelitria differs from Guembelitria mainly in the wall texture (pustulate to rugose vs. pore-mounded) and the position of the aperture (umbilical-extraumbilical to extraumbilical vs. umbilical). Chiloguembelitria shares its wall texture with Trochoguembelitria and some of the earliest specimens of Woodringina, suggesting that it played an important role in the evolution of early Danian guembelitriids, as it seems to be the most immediate ancestor of both trochospiral and biserial lineages. Morphological and morphostatistical analyses of Chiloguembelitria discriminate at least five species: Chg. danica, Chg. irregularis, and three new species: Chg. hofkeri, Chg. trilobata and Chg. biseriata

    Contribution of orbital forcing and Deccan volcanism to global climatic and biotic changes across the Cretaceous-Paleogene boundary at Zumaia, Spain

    Get PDF
    Untangling the timing of the environmental effects of Deccan volcanism with respect to the Chicxulub impact is instrumental to fully assessing the contributions of both to climate change over the Cretaceous-Paleogene boundary (KPB) interval. Despite recent improvements in radiometric age calibrations, the accuracy of age constraints and correlations is insufficient to resolve the exact mechanisms leading to environmental and climate change in the 1 m.y. across the KPB. We present new high-resolution planktic foraminiferal, geochemical, and geophysical data from the Zumaia section (Spain), calibrated to an updated orbitally tuned age model. We provide a revised chronology for the major carbon isotope excursions (CIEs) and planktic foraminiferal events and test temporal relationships with different models of the eruptive phases of the Deccan Traps. Our data show that the major CIEs near the KPB, i.e., the late Maastrichtian warming event (66.25–66.10 Ma) and the Dan-C2 event (65.8–65.7 Ma), are synchronous with the last and the first 405 k.y. eccentricity maximum of the Maastrichtian and the Danian, respectively, and that the minor Lower C29n event (65.48–65.41 Ma) is well constrained to a short eccentricity maximum. Conversely, we obtained evidence of abrupt environmental change likely related to Deccan volcanism at ca. 65.9 Ma, based on a bloom of opportunistic triserial guembelitriids (Chiloguembelitria). The orbital, isotopic, and paleobiological temporal relationships with Deccan volcanism established here provide new insights into the role of Deccan volcanism in climate and environmental change in the 1 m.y. across the KPB. © 2021. The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license

    Stem Cells for Modeling Human Disease

    Get PDF
    Human pluripotent stem cells (PSCs) in the form of human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) are capable of growing indefinitely in vitro, maintaining their capacity to differentiate into the three primary germ layers: mesoderm, endoderm and ectoderm. Different protocols have been developed to differentiate PSCs into almost any cellular type with different degree of success. This technology has allowed scientists to use patient‐derived iPSCs to study the physiopathology of the disease by analyzing the phenotype of the cells derived from these iPSCs. However, control iPSCs obtained from healthy individuals will always have different genomic environment than patient\u27s iPSCs, making it difficult the interpretation of the cells phenotype. The recent appearance of specific nucleases [zinc‐finger nucleases (ZFNs), the transcription activator‐like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)] has made it possible to edit the genome of PSCs. We can now generate syngeneic hESCs or iPSCs harboring the desired mutation and comparing the emerging cells with those derived from genetically identical PSCs that will differ only in the mutated gene. In this chapter, we summarize the progress made in this field and discuss the different approaches that have been used recently for the generation of syngeneic human pluripotent cellular models for different pathologies
    corecore