7,211 research outputs found
DELPHES 3, A modular framework for fast simulation of a generic collider experiment
The version 3.0 of the DELPHES fast-simulation is presented. The goal of
DELPHES is to allow the simulation of a multipurpose detector for
phenomenological studies. The simulation includes a track propagation system
embedded in a magnetic field, electromagnetic and hadron calorimeters, and a
muon identification system. Physics objects that can be used for data analysis
are then reconstructed from the simulated detector response. These include
tracks and calorimeter deposits and high level objects such as isolated
electrons, jets, taus, and missing energy. The new modular approach allows for
greater flexibility in the design of the simulation and reconstruction
sequence. New features such as the particle-flow reconstruction approach,
crucial in the first years of the LHC, and pile-up simulation and mitigation,
which is needed for the simulation of the LHC detectors in the near future,
have also been implemented. The DELPHES framework is not meant to be used for
advanced detector studies, for which more accurate tools are needed. Although
some aspects of DELPHES are hadron collider specific, it is flexible enough to
be adapted to the needs of electron-positron collider experiments.Comment: JHEP 1402 (2014
Cluster of legionnaires’ disease in an Italian prison
Background: Legionella pneumophila (Lp) is the most common etiologic agent causing Legionnaires’ Disease (LD). Water systems offer the best growth conditions for Lp and support its spread by producing aerosols. From 2015 to 2017, the Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis of Palermo monitored the presence of Lp in nine prisons in Western Sicily. During this investigation, we compared Lp isolates from environmental samples in a prison located in Palermo with isolates from two prisoners in the same prison. Methods: We collected 93 water samples from nine Sicilian prisons and the bronchoalveolar lavages (BALs) of two prisoners considered cases of LD. These samples were processed following the procedures described in the Italian Guidelines for the Prevention and Control of Legionellosis of 2015. Then, genotyping was performed on 19 Lp colonies (17 from water samples and 2 from clinical samples) using the Sequence-Based Typing (SBT) method, according to European Study Group for Legionella Infections (ESGLI) protocols. Results: Lp serogroup (sg) 6 was the most prevalent serogroup isolated from the prisons analyzed (40%), followed by Lp sg 1 (16%). Most of all, in four penitentiary institutions, we detected a high concentration of Lp >104 Colony Forming Unit/Liter (CFU/L). The environmental molecular investigation found the following Sequence Types (STs) in Lp sg 6: ST 93, ST 292, ST 461, ST 728, ST 1317 and ST 1362, while most of the isolates in sg 1 belonged to ST 1. We also found a new ST that has since been assigned the number 2451 in the ESGLI-SBT database. From the several Lp sg 1 colonies isolated from the two BALs, we identified ST 2451. Conclusions: In this article, we described the results obtained from environmental and epidemiological investigations of Lp isolated from prisons in Western Sicily. Furthermore, we reported the first cluster of Legionnaires’ in an Italian prison and the molecular typing of Lp sg 1 from one prison’s water system and two BALs, identified the source of the contamination, and discovered a new ST
Knowledge, attitudes and self-reported practices of food service staff in nursing homes and long-term care facilities
The aim of this study was to investigate knowledge, attitudes and practices of food service staff in nursing homes and long-term care facilities for the elderly in Sicily, Italy. Association with some demographic and
work-related variables was also investigated. This survey provides information and outlines many complex
questions concerning the basics of food hygiene. Education level, length of service in the employment and attending courses on food hygiene influenced the knowledge, attitudes and practices of food
service staff. This study has evidenced the need for continuous training among food service staff regarding food safety in LTCF and nursing homes
Current and future trends in the laboratory diagnosis of sexually transmitted infections
Sexually transmitted infections (STIs) continue to exert a considerable public health and social burden globally, particularly for developing countries. Due to the high prevalence of asymptomatic infections and the limitations of symptom-based (syndromic) diagnosis, confirmation of infection using laboratory tools is essential to choose the most appropriate course of treatment and to screen at-risk groups. Numerous laboratory tests and platforms have been developed for gonorrhea, chlamydia, syphilis, trichomoniasis, genital mycoplasmas, herpesviruses, and human papillomavirus. Point-of-care testing is now a possibility, and microfluidic and high-throughput omics technologies promise to revolutionize the diagnosis of STIs. The scope of this paper is to provide an updated overview of the current laboratory diagnostic tools for these infections, highlighting their advantages, limitations, and point-of-care adaptability. The diagnostic applicability of the latest molecular and biochemical approaches is also discussed
Towards portable muography with small-area, gas-tight glass Resistive Plate Chambers
Imaging techniques that use atmospheric muons, collectively named under the
neologism "muography", have seen a tremendous growth in recent times, mainly
due to their diverse range of applications. The most well-known ones include
but are not limited to: volcanology, archaeology, civil engineering, nuclear
reactor monitoring, nuclear waste characterization, underground mapping, etc.
These methods are based on the attenuation or deviation of muons to image large
and/or dense objects where conventional techniques cannot work or their use
becomes challenging.
In this context, we have constructed a muography telescope based on "mini
glass-RPC planes" following a design similar to the glass-RPC detectors
developed by the CALICE Collaboration and used by the TOMUVOL experiment in the
context of volcano radiography, but with smaller active area (16 16
cm). The compact size makes it an attractive choice with respect to other
detectors previously employed for imaging on similar scales. An important
innovation in this design is that the detectors are sealed. This makes the
detector more portable and solves the usual safety and logistic issues for gas
detectors operated underground and/or inside small rooms. This paper provides
an overview on our guiding principles, the detector development and our
operational experiences. Drawing on the lessons learnt from the first
prototype, we also discuss our future direction for an improved second
prototype, focusing primarily on a recently adopted serigraphy technique for
the resistive coating of the glass plates.Comment: 8 pages, 7 figures, XV Workshop on Resistive Plate Chambers and
Related Detectors (RPC2020
New long-lived particle searches in heavy-ion collisions at the LHC
We show that heavy-ion collisions at the LHC provide a promising environment to search for signatures with displaced vertices in well-motivated new physics scenarios. Compared to proton collisions, they offer several advantages: (i) the number of parton level interactions per collision is larger, (ii) there is no pileup, (iii) the lower instantaneous luminosity compared to proton collisions allows one to operate the LHC experiments with very loose triggers, and (iv) there are new production mechanisms that are absent in proton collisions We focus on the third point and show that the modification of the triggers alone can increase the number of observable events by orders of magnitude if the long-lived particles are predominantly produced with low transverse momentum. Our results show that collisions of ions lighter than lead are well motivated from the viewpoint of searches for new physics. We illustrate this for the example of heavy neutrinos in the Neutrino Minimal Standard Model
Cocirculation of Hajj and non-Hajj strains among serogroup W meningococci in Italy, 2000 to 2016
In Italy, B and C are the predominant serogroups among meningococci causing invasive diseases. Nevertheless, in the period from 2013 to 2016, an increase in serogroup W Neisseria meningitidis (MenW) was observed. This study intends to define the main characteristics of 63 MenW isolates responsible of invasive meningococcal disease (IMD) in Italy from 2000 to 2016. We performed whole genome sequencing on bacterial isolates or single gene sequencing on culturenegative samples to evaluate molecular heterogeneity. Our main finding was the cocirculation of the Hajj and the South American sublineages belonging to MenW/ clonal complex (cc)11, which gradually surpassed the MenW/cc22 in Italy. All MenW/cc11 isolates were fully susceptible to cefotaxime, ceftriaxone, ciprofloxacin, penicillin G and rifampicin. We identified the fulllength NadA protein variant 2/3, present in all the MenW/cc11. We also identified the fHbp variant 1, which we found exclusively in the MenW/cc11/Hajj sublineage. Concern about the epidemic potential of MenW/cc11 has increased worldwide since the year 2000. Continued surveillance, supported by genomic characterisation, allows high-resolution tracking of pathogen dissemination and the detection of epidemicassociated strains
- …