3 research outputs found

    Results of the Sophia module intercomparison part-1: stc, low irradiance conditions and temperature coefficients measurements of C-Si technologies

    Get PDF
    The results of a measurement intercomparison between eleven European laboratories measuring PV energy relevant parameters are reported. The purpose of the round-robin was to assess the uncertainty analyses of the participating laboratories on c-Si modules and to establish a baseline for the following thin-film round-robin. Alongside the STC measurements, low irradiance conditions (200W/m2) and temperature coefficients measurements were performed. The largest measurement deviation from the median at STC was for HIT modules from -3.6% to +2.7% in PMAX, but in agreement with the stated uncertainties of the participants. This was not the case for low irradiance conditions and temperature coefficients measurements with some partners underestimating their uncertainties. Larger deviations from the median from -5% to +3% in PMAX at low irradiance conditions and -6.6% to +18.3% for the PMAX temperature coefficient were observed. The main sources of uncertainties contributing to the spread in measurements were the RC calibration, mismatch factor and capacitive effects at STC and low irradiance conditions as well as the additional light inhomogeneity for the latter. The uncertainty in the junction temperature and the temperature deviation across the module were the major contributors for temperature coefficients measurements

    Uncertainty in energy yield estimation based on C-Si module roundrobin results.

    Get PDF
    Results of the European FP7 Sophia project roundrobin of c-Si module power measurements at STC and low irradiance and temperature coefficients were used to calculate annual energy yield at four sites. The deviation in the estimates solely due to the different measurement results is reported, neglecting the uncertainty in the meteorological data and losses unrelated to the performed measurements. While minimising the deviation in Pmax measurements remains the key challenge, the low irradiance and temperature coefficient contributions are shown to be significant. Propagating the measurement deviation in c-Si module measurements would suggest that expanded uncertainty in energy yield due to module characterization alone can be as high as ±3-4%

    World-wide architecture of osteoporosis research: density-equalizing mapping studies and gender analysis

    No full text
    <p><b>Objective:</b> While research activities on osteoporosis grow constantly, no concise description of the global research architecture exists. Hence, we aim to analyze and depict the world-wide scientific output on osteoporosis combining bibliometric tools, density-equalizing mapping projections and gender analysis.</p> <p><b>Method:</b> Using the NewQIS platform, we analyzed all osteoporosis-related publications authored from 1900 to 2012 and indexed by the Web of Science. Bibliometric details were analyzed related to quantitative and semi-qualitative aspects.</p> <p><b>Results:</b> The majority of 57 453 identified publications were original research articles. The USA and Western Europe dominated the field regarding cooperation activity, publication and citation performance. Asia, Africa and South America played a minimal role. Gender analysis revealed a dominance of male scientists in almost all countries except Brazil.</p> <p><b>Conclusion:</b> Although the scientific performance on osteoporosis is increasing world-wide, a significant disparity in terms of research output was visible between developed and low-income countries. This finding is particularly concerning since epidemiologic evaluations of future osteoporosis prevalences predict enormous challenges for the health-care systems in low-resource countries. Hence, our study underscores the need to address these disparities by fostering future research endeavors in these nations with the aim to successfully prevent a growing global burden related to osteoporosis.</p
    corecore