120 research outputs found
Pressure-induced structural, electronic, and magnetic effects in BiFeO3
We present a first-principles study of multiferroic BiFeO3 at high pressures.
Our work reveals the main structural (change in Bi's coordination and loss of
ferroelectricity), electronic (spin crossover and metallization), and magnetic
(loss of order) effects favored by compression and how they are connected. Our
results are consistent with the striking manifold transition observed
experimentally by Gavriliuk et al. [Phys. Rev. B 77, 155112 (2008)] and provide
an explanation for it.Comment: 4 pages with 4 figures embedded. More information at
http://www.icmab.es/dmmis/leem/jorg
Raman study of the Verwey transition in Magnetite at high-pressure and low-temperature; effect of Al doping
We report high-pressure low-temperature Raman studies of the Verwey
transition in pure and Al-doped magnetite (Fe_3O_4). The low temperature phase
of magnetite displays a number of additional Raman modes that serve as
transition markers. These transition markers allow one to investigate the
effect of hydrostatic pressure on the Verwey transition temperature. Al-doped
magnetite Fe_2.8Al_0.2O_4 (TV=116.5K) displays a nearly linear decrease of the
transition temperature with an increase of pressure yielding dP/dT_V = -0.096
GPa/K. In contrast pure magnetite displays a significantly steeper slope of the
PT equilibrium line with dP/dT_V = -0.18 GPa/K. The slope of the PT equilibrium
lines is related to the changes of the molar entropy and molar volume at the
transition. We compare our spectroscopic data with that obtained from the
ambient pressure specific heat measurements and find a good agreement in the
optimally doped magnetite. Our data indicates that Al doping leads to a smaller
entropy change and larger volume expansion at the transition. Our data displays
the trends that are consistent with the mean field model of the transition that
assumes charge ordering in magnetite.Comment: 17 pages, 3 figure
Pressure dependence of the Curie temperature in Ni2MnSn Heusler alloy: A first-principles study
The pressure dependence of electronic structure, exchange interactions and
Curie temperature in ferromagnetic Heusler alloy Ni2MnSn has been studied
theoretically within the framework of the density-functional theory. The
calculation of the exchange parameters is based on the frozen--magnon approach.
The Curie temperature, Tc, is calculated within the mean-field approximation by
solving the matrix equation for a multi-sublattice system. In agrement with
experiment the Curie temperature increased from 362K at ambient pressure to 396
at 12 GPa. Extending the variation of the lattice parameter beyond the range
studied experimentally we obtained non-monotonous pressure dependence of the
Curie temperature and metamagnetic transition. We relate the theoretical
dependence of Tc on the lattice constant to the corresponding dependence
predicted by the empirical interaction curve. The Mn-Ni atomic interchange
observed experimentally is simulated to study its influence on the Curie
temperature.Comment: 8 pages, 8 figure
Magnetoelectric Effect and Spontaneous Polarization in HoFe(BO) and HoNdFe(BO)
The thermodynamic, magnetic, dielectric, and magnetoelectric properties of
HoFe(BO) and HoNdFe(BO) are
investigated. Both compounds show a second order Ne\'{e}l transition above 30 K
and a first order spin reorientation transition below 10 K.
HoFe(BO) develops a spontaneous electrical polarization below the
Ne\'{e}l temperature (T) which is diminished in external magnetic fields.
No magnetoelectric effect could be observed in HoFe(BO). In
contrast, the solid solution HoNdFe(BO) exhibits
both, a spontaneous polarization below T and a magnetoelectric effect at
higher fields that extends to high temperatures. The superposition of
spontaneous polarization, induced by the internal magnetic field in the ordered
state, and the magnetoelectric polarizations due to the external field results
in a complex behavior of the total polarization measured as a function of
temperature and field.Comment: 12 pages, 15 figure
Role of the conduction electrons in mediating exchange interactions in Heusler alloys
Because of large spatial separation of the Mn atoms in Heusler alloys the Mn
3d states belonging to different atoms do not overlap considerably. Therefore
an indirect exchange interaction between Mn atoms should play a crucial role in
the ferromagnetism of the systems. To study the nature of the ferromagnetism of
various Mn-based semi- and full-Heusler alloys we perform a systematic
first-principles calculation of the exchange interactions in these materials.
The calculation of the exchange parameters is based on the frozen-magnon
approach. The calculations show that the magnetism of the Mn-based Heusler
alloys depends strongly on the number of conduction electrons, their spin
polarization and the position of the unoccupied Mn 3d states with respect to
the Fermi level. Various magnetic phases are obtained depending on the
combination of these characteristics. The Anderson's s-d model is used to
perform a qualitative analysis of the obtained results. The conditions leading
to diverse magnetic behavior are identified. If the spin polarization of the
conduction electrons at the Fermi energy is large and the unoccupied Mn 3d
states lie well above the Fermi level, an RKKY-type ferromagnetic interaction
is dominating. On the other hand, the contribution of the antiferromagnetic
superexchange becomes important if unoccupied Mn 3d states lie close to the
Fermi energy. The resulting magnetic behavior depends on the competition of
these two exchange mechanisms. The calculational results are in good
correlation with the conclusions made on the basis of the Anderson s-d model
which provides useful framework for the analysis of the results of
first-principles calculations and helps to formulate the conditions for high
Curie temperature.Comment: 16 pages, 9 figures, 2 table
Elements of mathematics in problems. Through olympiads and circles to profession
This is a collection of teaching materials used in several Russian
universities, schools, and mathematical circles. Most problems are chosen in
such a way that in the course of the solution and discussion a reader learns
important mathematical ideas and theories. The materials can be used by pupils
and students for self-study, and by teachers.
This is an abridged pre-copyedit version of the published book submitted with
the permission of the publisher. Each included individual material is
self-contained and ready-for-use. Solutions to problems are not included
intentionally. This collection consolidates updates of several arXiv
submissions, e.g., arXiv:1305.2598.Comment: Edited by A. Skopenkov, M. Skopenkov, A. Zaslavsky. In Russian.
Optimized for printing on A5 paper. Moscow Center for Continuous Mathematical
Education, 2018, 592pp (in Russian
Material-Specific Investigations of Correlated Electron Systems
We present the results of numerical studies for selected materials with
strongly correlated electrons using a combination of the local-density
approximation and dynamical mean-field theory (DMFT). For the solution of the
DMFT equations a continuous-time quantum Monte-Carlo algorithm was employed.
All simulations were performed on the supercomputer HLRB II at the Leibniz
Rechenzentrum in Munich. Specifically we have analyzed the pressure induced
metal-insulator transitions in Fe2O3 and NiS2, the charge susceptibility of the
fluctuating-valence elemental metal Yb, and the spectral properties of a
covalent band-insulator model which includes local electronic correlations.Comment: 14 pages, 7 figures, to appear in "High Performance Computing in
Science and Engineering, Garching 2009" (Springer
Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry
In this paper we examine the role of crystal chemistry factors in creating
conditions for formation of magnetoelectric ordering in BiFeO3. It is generally
accepted that the main reason of the ferroelectric distortion in BiFeO3 is
concerned with a stereochemical activity of the Bi lone pair. However, the lone
pair is stereochemically active in the paraelectric orthorhombic beta-phase as
well. We demonstrate that a crucial role in emerging of phase transitions of
the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order
types belongs to the change of the degree of the lone pair stereochemical
activity - its consecutive increase with the temperature decrease. Using the
structural data, we calculated the sign and strength of magnetic couplings in
BiFeO3 in the range from 945 C down to 25 C and found the couplings, which
undergo the antiferromagnetic-ferromagnetic transition with the temperature
decrease and give rise to the antiferromagnetic ordering and its delay in
regard to temperature, as compared to the ferroelectric ordering. We discuss
the reasons of emerging of the spatially modulated spin structure and its
suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table
- …