42,024 research outputs found

    Spin-charge Separation in Nodal Antiferromagnetic Insulator

    Full text link
    In this paper, by using two dimensional (2D) Hubbard models with pi-flux phase and that on a hexagonal lattice as examples, we explore spin-charge-separated solitons in nodal antiferromagnetic (AF) insulator - an AF order with massive Dirac fermionic excitations (see detail in the paper). We calculate fermion zero modes and induced quantum numbers on solitons (half skyrmions) in the continuum limit, which are similar to that in the quasi one-dimensional conductor polyacetylene (CH)x and that in topological band insulator. In particular, we find some novel phenomena : thanks to an induced staggered spin moment, a mobile half skyrmion becomes a fermionic particle; when a hole or an electron is added, the half skyrmion turns into a bosonic particle with charge degree of freedom only. Our results imply that nontrivial induced quantum number on solitons may be a universal feature of spin-charge separation in different systems

    On length spectrum metrics and weak metrics on Teichmüller spaces of surfaces with boundary

    No full text
    We define and study metrics and weak metrics on the Teichmüller space of a surface of topologically finite type with boundary. These metrics and weak metrics are associated to the hyperbolic length spectrum of simple closed curves and of properly embedded arcs in the surface. We give a comparison between the defined metrics on regions of Teichmüller space which we call ε0\varepsilon_0-relative ϵ\epsilon-thick parts} for ϵ>0\epsilon >0 and ε0ϵ>0\varepsilon_0\geq \epsilon>0

    Transverse Quark Distribution in Mesons - QCD Sum Rule Approach -

    Full text link
    QCD sum rules are used to compute the first few moments of the mesonic quark momentum. Transverse, longitudinal and mixed transverse-longitudinal components are examined. The transverse size of the pion is shown to be dictated by the gluon condensate, even though the mass and the longitudinal distribution are dominated by the quark condensate. The implications of our results for color transparency physics and finite temperature QCD are discussed.Comment: 8 pages, Latex, Univ. of Washington preprint DOE/ER/40427-24-N9

    Length spectra and the Teichmüller metric for surfaces with boundary

    Get PDF
    International audienceWe consider some metrics and weak metrics defined on the Teichmmüller space of a surface of finite type with nonempty boundary, that are defined using the hyperbolic length spectrum of simple closed curves and of properly embedded arcs, and we compare these metrics and weak metrics with the Teichmüller metric. The comparison is on subsets of Teichmüller space which we call ''ε0\varepsilon_0-relative ϵ\epsilon-thick parts", and whose definition depends on the choice of some positive constants ε0\varepsilon_0 and ϵ\epsilon. Meanwhile, we give a formula for the Teichmüller metric of a surface with boundary in terms of extremal lengths of families of arcs

    Transport Properties in the "Strange Metal Phase" of High Tc Cuprates: Spin-Charge Gauge Theory Versus Experiments

    Full text link
    The SU(2)xU(1) Chern-Simons spin-charge gauge approach developed earlier to describe the transport properties of the cuprate superconductors in the ``pseudogap'' regime, in particular, the metal-insulator crossover of the in-plane resistivity, is generalized to the ``strange metal'' phase at higher temperature/doping. The short-range antiferromagnetic order and the gauge field fluctuations, which were the key ingredients in the theory for the pseudogap phase, also play an important role in the present case. The main difference between these two phases is caused by the existence of an underlying statistical π\pi-flux lattice for charge carriers in the former case, whereas the background flux is absent in the latter case. The Fermi surface then changes from small ``arcs'' in the pseudogap to a rather large closed line in the strange metal phase. As a consequence the celebrated linear in T dependence of the in-plane and out-of-plane resistivity is shown explicitly to recover. The doping concentration and temperature dependence of theoretically calculated in-plane and out-of-plane resistivity, spin-relaxation rate and AC conductivity are compared with experimental data, showing good agreement.Comment: 14 pages, 5 .eps figures, submitted to Phys. Rev. B, revised version submitted on 24 Oc

    Fulde-Ferrel-Larkin-Ovchinnikov Inhomogeneous Superconducting State and Phase Transitions Induced by Spin Accumulation in a Ferromagnet-dx2y2 d_{x^{2}-y^{2}}-Wave Superconductor-Ferromagnet Tunnel Junction

    Full text link
    Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) inhomogeneous superconducting (SC) state, first- and second-order phase transitions, and quantum criticality induced by spin accumulation in a ferromagnet-dx2y2d_{x^{2}-y^{2}}-wave superconductor-ferromagnet tunnel junction are theoretically predicted. A complex phase diagram in the temperature-bias voltage plane is determined. It is found that the phase transitions from the homogeneous BCS state to the inhomogeneous FFLO state, and from the FFLO state with the momentum q\mathbf{% q}'s azimuthal angle θq=0\theta_{\mathbf{q}}=0 to that with θq=π/4\theta_{% \mathbf{q}}=\pi /4, are of the first-order; while the transitions from all SC states to the normal state at critical voltages are of the second-order. A Lifshitz point, a bicritical point and a quantum critical point are identified.Comment: 5 pages, 5 figure

    First- and Second-Order Phase Transitions, Fulde-Ferrel Inhomogeneous State and Quantum Criticality in Ferromagnet/Superconductor Double Tunnel Junctions

    Full text link
    First- and second-order phase transitions, Fulde-Ferrel (FF) inhomogeneous superconducting (SC) state and quantum criticality in ferromagnet/superconductor/ferromagnet double tunnel junctions are investigated. For the antiparallel alignment of magnetizations, it is shown that a first-order phase transition from the homogeneous BCS state to the inhomogeneous FF state occurs at a certain bias voltage VV^{\ast}; while the transitions from the BCS state and the FF state to the normal state at Vc% V_{c} are of the second-order. A phase diagram for the central superconductor is presented. In addition, a quantum critical point (QCP), % V_{QCP}, is identified. It is uncovered that near the QCP, the SC gap, the chemical potential shift induced by the spin accumulation, and the difference of free energies between the SC and normal states vanish as % |V-V_{QCP}|^{z\nu} with the quantum critical exponents zν=1/2z\nu =1/2, 1 and 2, respectively. The tunnel conductance and magnetoresistance are also discussed.Comment: 5 pages, 4 figures, Phys. Rev. B 71, 144514 (2005
    corecore