128 research outputs found

    Structured Variability in Purkinje Cell Activity during Locomotion

    Get PDF
    The cerebellum is a prominent vertebrate brain structure that is critically involved in sensorimotor function. During locomotion, cerebellar Purkinje cells are rhythmically active, shaping descending signals and coordinating commands from higher brain areas with the step cycle. However, the variation in this activity across steps has not been studied, and its statistical structure, afferent mechanisms, and relationship to behavior remain unknown. Here, using multi-electrode recordings in freely moving rats, we show that behavioral variables systematically influence the shape of the step-locked firing rate. This effect depends strongly on the phase of the step cycle and reveals a functional clustering of Purkinje cells. Furthermore, we find a pronounced disassociation between patterns of variability driven by the parallel and climbing fibers. These results suggest that Purkinje cell activity not only represents step phase within each cycle but also is shaped by behavior across steps, facilitating control of movement under dynamic conditions

    Dopamine signaling differences in the nucleus accumbens and dorsal striatum exploited by nicotine

    Get PDF
    The dorsal striatum and the nucleus accumbens (NAc) shell of the ventral striatum have similar cellular components and are both richly innervated by dopamine neurons. Despite similarities that extend throughout the striatum, only the NAc shell has a conspicuous increase in basal dopamine upon the initial administration of psychostimulant drugs such as nicotine. As measured by microdialysis, the elevated dopamine in the NAc shell is considered an identifying functional characteristic of addictive drugs. To examine this general functional difference between nicotine's action on the dorsolateral striatum and NAc shell, we directly monitored dopamine release in rat striatal slices using fast-scan cyclic voltammetry. In addition, we separately monitored the in vivo unit firing activity of putative midbrain dopamine neurons from freely moving rats using chronic multiple tetrodes. Nicotine administration increased the firing frequency of dopamine neurons and specifically increased the number and the length of phasic burst firing. The frequency dependence for dopamine release in the dorsolateral striatum and NAc shell is fundamentally different, enabling mainly the NAc shell to capitalize on the nicotine-induced phasic burst firing by dopamine neurons. Although nicotine decreased low-frequency (tonic) dopamine release in both areas, the increased ratio of phasic bursts relative to tonic firing caused by nicotine boosted the basal dopamine concentration predominantly in the NAc shell. By favoring release from bursts while depressing release from tonic signals, nicotine spreads the range of dopamine signaling and effectively increases the signal-to-noise relationship along dopamine afferents

    Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons

    Full text link
    We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which multiple periodic spatio-temporal patterns of spike timing are memorized as limit-cycle-type attractors. In encoding the spatio-temporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asymmetric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase transition due to the loss of the stability of periodic solution is observed when we assume fast alpha-function for direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ Floquet theory in which the stability problem of the infinite number of spiking neurons interacting with alpha-function is reduced into the eigenvalue problem with the finite size of matrix. Numerical integration of the single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point of the phase transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.

    A wireless multi-channel neural amplifier for freely moving animals

    Get PDF
    Conventional neural recording systems restrict behavioral experiments to a flat indoor environment compatible with the cable that tethers the subject to recording instruments. To overcome these constraints, we developed a wireless multi-channel system for recording neural signals from rats. The device takes up to 64 voltage signals from implanted electrodes, samples each at 20 kHz, time-division multiplexes them into one signal and transmits that output by radio frequency to a receiver up to 60 m away. The system introduces <4 μV of electrode-referred noise, comparable to wired recording systems, and outperforms existing rodent telemetry systems in channel count, weight and transmission range. This allows effective recording of brain signals in freely behaving animals. We report measurements of neural population activity taken outdoors and in tunnels. Neural firing in the visual cortex was relatively sparse, correlated even across large distances and was strongly influenced by locomotor activity

    Persistent Hyperdopaminergia Decreases the Peak Frequency of Hippocampal Theta Oscillations during Quiet Waking and REM Sleep

    Get PDF
    Long-term changes in dopaminergic signaling are thought to underlie the pathophysiology of a number of psychiatric disorders. Several conditions are associated with cognitive deficits such as disturbances in attention processes and learning and memory, suggesting that persistent changes in dopaminergic signaling may alter neural mechanisms underlying these processes. Dopamine transporter knockout (DAT-KO) mice exhibit a persistent five-fold increase in extracellular dopamine levels. Here, we demonstrate that DAT-KO mice display lower hippocampal theta oscillation frequencies during baseline periods of waking and rapid-eye movement sleep. These altered theta oscillations are not reversed via treatment with the antidopaminergic agent haloperidol. Thus, we propose that persistent hyperdopaminergia, together with secondary alterations in other neuromodulatory systems, results in lower frequency activity in neural systems responsible for various cognitive processes

    Patterns of Coupled Theta Activity in Amygdala-Hippocampal-Prefrontal Cortical Circuits during Fear Extinction

    Get PDF
    Signals related to fear memory and extinction are processed within brain pathways involving the lateral amygdala (LA) for formation of aversive stimulus associations, the CA1 area of the hippocampus for context-dependent modulation of these associations, and the infralimbic region of the medial prefrontal cortex (mPFC) for extinction processes. While many studies have addressed the contribution of each of these modules individually, little is known about their interactions and how they function as an integrated system. Here we show, by combining multiple site local field potential (LFP) and unit recordings in freely behaving mice in a fear conditioning paradigm, that theta oscillations may provide a means for temporally and functionally connecting these modules. Theta oscillations occurred with high specificity in the CA1-LA-mPFC network. Theta coupling increased between all areas during retrieval of conditioned fear, and declined during extinction learning. During extinction recall, theta coupling partly rebounded in LA-mPFC and CA1-mPFC, and remained at a low level in CA1-LA. Interfering with theta coupling through local electrical microstimulation in CA1-LA affected conditioned fear and extinction recall depending on theta phase. These results support the hypothesis that theta coupling provides a means for inter-areal coordination in conditioned behavioral responsiveness. More specifically, theta oscillations seem to contribute to a population code indicating conditioned stimuli during recall of fear memory before and after extinction

    Decomposing Neural Synchrony: Toward an Explanation for Near-Zero Phase-Lag in Cortical Oscillatory Networks

    Get PDF
    Background: Synchronized oscillation in cortical networks has been suggested as a mechanism for diverse functions ranging from perceptual binding to memory formation to sensorimotor integration. Concomitant with synchronization is the occurrence of near-zero phase-lag often observed between network components. Recent theories have considered the importance of this phenomenon in establishing an effective communication framework among neuronal ensembles. Methodology/Principal Findings: Two factors, among possibly others, can be hypothesized to contribute to the near-zero phase-lag relationship: (1) positively correlated common input with no significant relative time delay and (2) bidirectional interaction. Thus far, no empirical test of these hypotheses has been possible for lack of means to tease apart the specific causes underlying the observed synchrony. In this work simulation examples were first used to illustrate the ideas. A quantitative method that decomposes the statistical interdependence between two cortical areas into a feed-forward, a feed-back and a common-input component was then introduced and applied to test the hypotheses on multichannel local field potential recordings from two behaving monkeys. Conclusion/Significance: The near-zero phase-lag phenomenon is important in the study of large-scale oscillatory networks. A rigorous mathematical theorem is used for the first time to empirically examine the factors that contribute to this phenomenon. Given the critical role that oscillatory activity is likely to play in the regulation of biological processes at al

    The spike-timing-dependent learning rule to encode spatiotemporal patterns in a network of spiking neurons

    Full text link
    We study associative memory neural networks based on the Hodgkin-Huxley type of spiking neurons. We introduce the spike-timing-dependent learning rule, in which the time window with the negative part as well as the positive part is used to describe the biologically plausible synaptic plasticity. The learning rule is applied to encode a number of periodical spatiotemporal patterns, which are successfully reproduced in the periodical firing pattern of spiking neurons in the process of memory retrieval. The global inhibition is incorporated into the model so as to induce the gamma oscillation. The occurrence of gamma oscillation turns out to give appropriate spike timings for memory retrieval of discrete type of spatiotemporal pattern. The theoretical analysis to elucidate the stationary properties of perfect retrieval state is conducted in the limit of an infinite number of neurons and shows the good agreement with the result of numerical simulations. The result of this analysis indicates that the presence of the negative and positive parts in the form of the time window contributes to reduce the size of crosstalk term, implying that the time window with the negative and positive parts is suitable to encode a number of spatiotemporal patterns. We draw some phase diagrams, in which we find various types of phase transitions with change of the intensity of global inhibition.Comment: Accepted for publication in Physical Review

    Spike firing and IPSPs in layer V pyramidal neurons during beta oscillations in rat primary motor cortex (M1) in vitro

    Get PDF
    Beta frequency oscillations (10-35 Hz) in motor regions of cerebral cortex play an important role in stabilising and suppressing unwanted movements, and become intensified during the pathological akinesia of Parkinson's Disease. We have used a cortical slice preparation of rat brain, combined with concurrent intracellular and field recordings from the primary motor cortex (M1), to explore the cellular basis of the persistent beta frequency (27-30 Hz) oscillations manifest in local field potentials (LFP) in layers II and V of M1 produced by continuous perfusion of kainic acid (100 nM) and carbachol (5 µM). Spontaneous depolarizing GABA-ergic IPSPs in layer V cells, intracellularly dialyzed with KCl and IEM1460 (to block glutamatergic EPSCs), were recorded at -80 mV. IPSPs showed a highly significant (P< 0.01) beta frequency component, which was highly significantly coherent with both the Layer II and V LFP oscillation (which were in antiphase to each other). Both IPSPs and the LFP beta oscillations were abolished by the GABAA antagonist bicuculline. Layer V cells at rest fired spontaneous action potentials at sub-beta frequencies (mean of 7.1+1.2 Hz; n = 27) which were phase-locked to the layer V LFP beta oscillation, preceding the peak of the LFP beta oscillation by some 20 ms. We propose that M1 beta oscillations, in common with other oscillations in other brain regions, can arise from synchronous hyperpolarization of pyramidal cells driven by synaptic inputs from a GABA-ergic interneuronal network (or networks) entrained by recurrent excitation derived from pyramidal cells. This mechanism plays an important role in both the physiology and pathophysiology of control of voluntary movement generation
    • …
    corecore