77 research outputs found

    Seafloor Segmentation Based on Bathymetric Measurements from Multibeam Echosounders Data

    Get PDF
    Bathymetric data depicts the geomorphology of the seabottom and allows characterization of spatial distributions of apparent benthic habitats. The variability of seafloor topography can be defined as a texture. This prompts for the application of well developed image processing techniques for automatic delineation of regions with clucially different physiographic characteristics. In the present paper histograms of biologically motivated invariant image attributes are used for characterization of local geomorphological feahires. This technique can be naturally applied in a range of spatial scales. Local feature vectors are then submitted to a procedure which divides the set into a number of clusters each representing a distinct type of the seafloor. Prior knowledge about benthic habitat locations allows the use of supervised classification, by training a Suppolt Vector Machine on a chosen data set, and then applying the developed model to a full set. The classification method is shown to perform well on the multibeam echosounder (MBES) data from Piscataqua River, New Hampshire, USA

    Quantitative Ground-Truthing of Habitat Characteristics Using Video Mosaic Images

    Get PDF

    Sensor-assisted Video Mapping of the Seafloor

    Get PDF
    In recent years video surveys have become an increasingly important ground-truthing of acousticseafloor characterization and benthic habitat mapping studies. However, the ground-truthing and detailed characterization provided by video are still typically done using sparse sample imagery supplemented by physical samples. Combining single video frames in a seamless mosaic can provide a tool by which imagery has significant areal coverage, while at the same time showing small fauna and biological features at mm resolution. The generation of such a mosaic is a challenging task due to height variations of the imaged terrain and decimeter scale knowledge of camera position. This paper discusses the current role of underwater video survey, and the potential for generating consistent, quantitative image maps using video data, accompanied by data that can be measured by auxiliary sensors with sufficient accuracy, such as camera tilt and heading, and their use in automated mosaicking techniques. The camera attitude data also provide the necessary information to support the development of a video collage. The collage provides a quick look at the large spatial scale features in a scene and can be used to pinpoint regions that are likely to yield useful information when rendered into high-resolution mosaics. It is proposed that high quality mosaics can be produced using consumer-grade cameras and low-cost sensors, thereby allowing for the economical scientific video surveys. A case study is presented with the results from benthic habitat mapping and the ground-truthing ofseafloor acoustic data using both real underwater imagery and simulations. A computer modeling of the process of video data acquisition (in particular on a non-flat terrain) allows for a better understanding of the main sources of error in mosaic generation and for the choice of near-optimal processing strategies. Various spatial patterns of video survey coverage are compared and it is shown that some patterns have certain advantages in the sense of accumulated error and overall mosaic accuracy

    Controlling domain patterns far from equilibrium

    Full text link
    A high degree of control over the structure and dynamics of domain patterns in nonequilibrium systems can be achieved by applying nonuniform external fields near parity breaking front bifurcations. An external field with a linear spatial profile stabilizes a propagating front at a fixed position or induces oscillations with frequency that scales like the square root of the field gradient. Nonmonotonic profiles produce a variety of patterns with controllable wavelengths, domain sizes, and frequencies and phases of oscillations.Comment: Published version, 4 pages, RevTeX. More at http://t7.lanl.gov/People/Aric

    Creation of the precision magnetic spectrometer SCAN-3

    Full text link
    The new JINR project [1] is aimed at studies of highly excited nuclear matter created in nuclei by a high-energy deuteron beam. The matter is studied through observation of its particular decay products - pairs of energetic particles with a wide opening angle, close to 180°. The new precision hybrid magnetic spectrometer SCAN-3 is to be built for detecting charged (π±, K±, p) and neutral (n) particles produced at the JINR Nuclotron internal target in dA collisions. One of the main and complex tasks is a study of low-energy ηA interaction and a search for η-bound states (η-mesic nuclei). Basic elements of the spectrometer and its characteristics are discussed in the article

    Subtidal Benthic Habitat Mapping Method Development Using Portsmouth Shallow Survey Data

    No full text

    Seafloor Habitat Mapping: Considering Techniques for Expansion of Spatial Scales

    No full text
    • …
    corecore