50,222 research outputs found

    Recursive dynamics for flexible multibody systems using spatial operators

    Get PDF
    Due to their structural flexibility, spacecraft and space manipulators are multibody systems with complex dynamics and possess a large number of degrees of freedom. Here the spatial operator algebra methodology is used to develop a new dynamics formulation and spatially recursive algorithms for such flexible multibody systems. A key feature of the formulation is that the operator description of the flexible system dynamics is identical in form to the corresponding operator description of the dynamics of rigid multibody systems. A significant advantage of this unifying approach is that it allows ideas and techniques for rigid multibody systems to be easily applied to flexible multibody systems. The algorithms use standard finite-element and assumed modes models for the individual body deformation. A Newton-Euler Operator Factorization of the mass matrix of the multibody system is first developed. It forms the basis for recursive algorithms such as for the inverse dynamics, the computation of the mass matrix, and the composite body forward dynamics for the system. Subsequently, an alternative Innovations Operator Factorization of the mass matrix, each of whose factors is invertible, is developed. It leads to an operator expression for the inverse of the mass matrix, and forms the basis for the recursive articulated body forward dynamics algorithm for the flexible multibody system. For simplicity, most of the development here focuses on serial chain multibody systems. However, extensions of the algorithms to general topology flexible multibody systems are described. While the computational cost of the algorithms depends on factors such as the topology and the amount of flexibility in the multibody system, in general, it appears that in contrast to the rigid multibody case, the articulated body forward dynamics algorithm is the more efficient algorithm for flexible multibody systems containing even a small number of flexible bodies. The variety of algorithms described here permits a user to choose the algorithm which is optimal for the multibody system at hand. The availability of a number of algorithms is even more important for real-time applications, where implementation on parallel processors or custom computing hardware is often necessary to maximize speed

    Zero-energy peak of the density of states and localization properties of a one-dimensional Frenkel exciton: Off-diagonal disorder

    Get PDF
    We study a one-dimensional Frenkel Hamiltonian with off-diagonal disorder, focusing our attention on the physical nature of the zero-energy peak of the density of states. The character of excitonic states (localized or delocalized) is also examined in the vicinity of this peak. It is shown that the state being responsible for the peak is localized. A detailed comparison of the nearest-neighbor approach with the long-range dipole-dipole coupling is performed.Comment: 15 pages with 7 figures (REVTeX). To appear in Physical Review

    The Non-Mesonic Weak Decay of Double-Lambda Hypernuclei: A Microscopic Approach

    Get PDF
    The non--mesonic weak decay of double--Λ\Lambda hypernuclei is studied within a microscopic diagrammatic approach. Besides the nucleon--induced mechanism, ΛN→nN\Lambda N\to nN, widely studied in single--Λ\Lambda hypernuclei, additional hyperon--induced mechanisms, ΛΛ→Λn\Lambda \Lambda\to \Lambda n, ΛΛ→Σ0n\Lambda \Lambda\to \Sigma^0 n and ΛΛ→Σ−p\Lambda \Lambda\to \Sigma^-p, are accessible in double--Λ\Lambda hypernuclei and are investigated here. As in previous works on single--Λ\Lambda hypernuclei, we adopt a nuclear matter formalism extended to finite nuclei via the local density approximation and a one--meson exchange weak transition potential (including the ground state pseudoscalar and vector octets mesons) supplemented by correlated and uncorrelated two--pion--exchange contributions. The weak decay rates are evaluated for hypernuclei in the region of the experimentally accessible light hypernuclei ΛΛ10^{10}_{\Lambda\Lambda}Be and ΛΛ13^{13}_{\Lambda\Lambda}B. Our predictions are compared with a few previous evaluations. The rate for the ΛΛ→Λn\Lambda \Lambda\to \Lambda n decay is dominated by KK--, K∗K^*-- and η\eta--exchange and turns out to be about 2.5\% of the free Λ\Lambda decay rate, ΓΛfree\Gamma_{\Lambda}^{\rm free}, while the total rate for the ΛΛ→Σ0n\Lambda \Lambda\to \Sigma^0 n and ΛΛ→Σ−p\Lambda \Lambda\to \Sigma^- p decays, dominated by π\pi--exchange, amounts to about 0.25\% of ΓΛfree\Gamma_{\Lambda}^{\rm free}. The experimental measurement of these decays would be essential for the beginning of a systematic study of the non--mesonic decay of strangeness −2-2 hypernuclei. This field of research could also shed light on the possible existence and nature of the HH--dibaryon.Comment: 17 pages, 2 figure

    Measuring the interaction force between a high temperature superconductor and a permanent magnet

    Full text link
    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give place to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction which represents a promising field regarding to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.Comment: 12 pages and 3 figures in postscrip

    Democratic particle motion for meta-basin transitions in simple glass-formers

    Full text link
    We use molecular dynamics computer simulations to investigate the local motion of the particles in a supercooled simple liquid. Using the concept of the distance matrix we find that the alpha-relaxation corresponds to a small number of crossings from one meta-basin to a neighboring one. Each crossing is very rapid and involves the collective motion of O(40) particles that form a relatively compact cluster, whereas string-like motions seem not to be relevant for these transitions. These compact clusters are thus candidates for the cooperatively rearranging regions proposed long times ago by Adam and Gibbs.Comment: 4 pages, 4 Postscript figure
    • …
    corecore