427 research outputs found
Low-frequency broadband sound source localization using an adaptive normal mode back-propagation approach in a shallow-water ocean
Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 1798-1813, doi:10.1121/1.3672643.A variety of localization methods with normal mode theory have been established for localizing low frequency (below a few hundred Hz), broadband signals in a shallow water environment. Gauss-Markov inverse theory is employed in this paper to derive an adaptive normal mode back-propagation approach. Joining with the maximum a posteriori mode filter, this approach is capable of separating signals from noisy data so that the back-propagation will not have significant influence from the noise. Numerical simulations are presented to demonstrate the robustness and accuracy of the approach, along with comparisons to other methods. Applications to real data collected at the edge of the continental shelf off New Jersey, USA are presented, and the effects of water column fluctuations caused by nonlinear internal waves and shelfbreak front variability are discussed.The SW06 experiment was supported by the Office of
Naval Research
Passive time reversal acoustic communications through shallow-water internal waves
Author Posting. © IEEE, 2010. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 35 (2010): 756-765, doi:10.1109/JOE.2010.2060530.During a 12-h period in the 2006 Shallow Water
Experiment (SW06), binary phase shift keying (BPSK) signals at
the carrier frequencies of 813 and 1627 Hz were propagated over
a 19.8-km source–receiver range when a packet of strong internal
waves passed through the acoustic track. The communication
data are analyzed by time reversal processing followed by a
single-channel decision feedback equalizer. Two types of internal
wave effects are investigated in the context of acoustic communications.
One is the rapid channel fluctuation within 90-s data
packets. It can be characterized as decreased channel coherence,
which was the result of fast sound-speed perturbations during
the internal wave passage. We show its effect on the time reversal
receiver performance and apply channel tracking in the receiver
to counteract such fluctuation. The other one is the long-term
(in the scale of hours) performance degradation in the depressed
waveguide when the internal waves passed through the acoustic
track. Even with channel tracking, the time reversal receiver experiences
average 3–4-dB decrease in the output signal-to-noise ratio
(SNR). Such long-term performance degradation is explained by
the ray approximation in the depressed waveguide.This work
was supported by the U.S. Office of Naval Research (ONR) Code 322OA under
Grants N00014-07-1-0546 and N00014-06-1019
Recommended from our members
Development of advanced NO sub x control concepts for coal-fired utility boilers
CombiNO{sub x} is a NO{sub x} reduction process which incorporates three different NO{sub x} control technologies: reburning, selective non-catalytic reduction (SNCR), and methanol injection. Gas reburning is a widely used technology that has been proven to reduce NO{sub x} up to 60% on full-scale applications. The specific goals of the CombiNO{sub x} project are: 70% NO{sub x} reduction at 20% of the cost of selective catalytic reduction; NO{sub x} levels at the stack of 60 ppm for ozone non-attainment areas; Demonstrate coal reburning; Identify all undesirable by-products of the process and their controlling parameters; Demonstrate 95% N0{sub 2} removal in a wet scrubber. Before integrating all three of CombiNO{sub x}'s technologies into a combined process, it is imperative that the chemistry of each individual process is well understood. Pilot-scale SNCR tests and the corresponding computer modeling were studied in detail and discussed in the previous quarterly report. This quarterly report will present the results obtained during the pilot-scale advanced reburning tests performed on EER's Boiler Simulation Facility (BSF). Since methanol injection is a relatively new NO{sub x} control technology, laboratory-scale tests were performed to better understand the conditions at which methanol is most effective. The experimental set-up and results from these tests will be discussed
Three-dimensional sound propagation models using the parabolic-equation approximation and the split-step Fourier method
Author Posting. © IMACS, 2012. This article is posted here by permission of World Scientific Publishing for personal use, not for redistribution. The definitive version was published in Journal of Computational Acoustics 21 (2013): 1250018, doi:10.1142/S0218396X1250018X.The split-step Fourier method is used in three-dimensional parabolic-equation (PE) models to compute underwater sound propagation in one direction (i.e. forward). The method is implemented in both Cartesian (x, y, z) and cylindrical (r, θ, z) coordinate systems, with forward defined as along x and radial coordinate r, respectively. The Cartesian model has uniform resolution throughout the domain, and has errors that increase with azimuthal angle from the x axis. The cylindrical model has consistent validity in each azimuthal direction, but a fixed cylindrical grid of radials cannot produce uniform resolution. Two different methods to achieve more uniform resolution in the cylindrical PE model are presented. One of the methods is to increase the grid points in azimuth, as a function of r, according to nonaliased sampling theory. The other is to make use of a fixed arc-length grid. In addition, a point-source starter is derived for the three-dimensional Cartesian PE model. Results from idealized seamount and slope calculations are shown to compare and verify the performance of the three methods.This work was sponsored by the Office of Naval Research under the grants N00014-10-1-0040
and N00014-11-1-0701
On whether azimuthal isotropy and alongshelf translational invariance are present in low-frequency acoustic propagation along the New Jersey shelfbreak
Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 1762-1781, doi:10.1121/1.3672644.To understand the issues associated with the presence (or lack) of azimuthal isotropy and horizontal (along isobath) invariance of low-frequency (center frequencies of 600 Hz and 900 Hz) acoustic propagation in a shelfbreak environment, a series of experiments were conducted under the Autonomous Wide-Aperture Cluster for Surveillance component of the Shallow Water 2006 experiment. Transmission loss data reported here were from two mobile acoustic sources executing (nearly) circular tracks transmitting to sonobuoy receivers in the circle centers, and from one 12.5 km alongshelf acoustic track. The circle radii were 7.5 km. Data are from September 8, 2006. Details of the acoustic and environmental measurements are presented. Simple analytic and computer models are used to assess the variability expected due to the ocean and seabed conditions encountered. A comparison of model results and data is made, which shows preliminary consistency between the data and the models, but also points towards further work that should be undertaken specifically in enlarging the range and frequency parameter space, and in looking at integrated transmission loss.Office of Naval Research Code 32
Time-evolving acoustic propagation modeling in a complex ocean environment
During naval operations, sonar performance estimates often need to be computed in-situ with limited environmental information. This calls for the use of fast acoustic propagation models. Many naval operations are carried out in challenging and dynamic environments. This makes acoustic propagation and sonar performance behavior particularly complex and variable, and complicates prediction. Using data from a field experiment, we have investigated the accuracy with which acoustic propagation loss (PL) can be predicted, using only limited modeling capabilities. Environmental input parameters came from various sources that may be available in a typical naval operation. The outer continental shelf shallow-water experimental area featured internal tides, packets of nonlinear internal waves, and a meandering water mass front. For a moored source/receiver pair separated by 19.6 km, the acoustic propagation loss for 800 Hz pulses was computed using the peak amplitude. The variations in sound speed translated into considerable PL variability of order 15 dB. Acoustic loss modeling was carried out using a data-driven regional ocean model as well as measured sound speed profile data for comparison. The acoustic model used a two-dimensional parabolic approximation (vertical and radial outward wavenumbers only). The variance of modeled propagation loss was less than that measured. The effect of the internal tides and sub-tidal features was reasonably well modeled; these made use of measured sound speed data. The effects of nonlinear waves were not well modeled, consistent with their known three-dimensional effects but also with the lack of measurements to initialize and constrain them.Netherlands. Ministry of DefenceUnited States. Office of Naval Research (Grant N00014-12-1-0944 (ONR6.2))United States. Office of Naval Research (Grant N00014-08-1-1097 (ONR6.1))United States. Office of Naval Research (Grant N00014-08-1-0680 (PLUS-SEAS)
Noneruptive Unrest at the Caldera of Alcedo Volcano (Galápagos Islands) Revealed by InSAR Data and Geodetic Modeling
Understanding volcanic unrest is crucial to forecasting eruptions. At active mafic calderas unrest culminates in eruption more frequently than at felsic calderas. However, the mafic caldera of Alcedo Volcano (Ecuador) has experienced repeated episodes of unrest without erupting, since at least 1992, when geodetic monitoring began. Here we investigate the unrest that occurred between 2007 and 2011 using interferometric synthetic aperture radar (InSAR) data and geodetic modeling. We observe an initial asymmetric uplift of the southern caldera floor (~30 cm of vertical motion) from 2007 to 2009, followed by subsidence of the uplifted area and contemporary uplift of the northwestern caldera rim between January and June 2010. Finally, from June 2010 through March 2011, caldera uplift resumed. The first uplift episode is best explained by inflation of a sill and the activation of an inner ring fault. Successive caldera subsidence and rim uplift are compatible with the withdrawal of magma from the previously inflated sill and its northwestern migration. The resumption of uplift is consistent with the repressurization of the sill. This evolution suggests episodic magma emplacement in a shallow reservoir beneath the caldera, with aborted lateral magma migration, probably due to the discontinuous supply from depth. This short‐term deformation pattern matches well geological observations showing a longer‐term (hundreds of years at least) asymmetric uplift of the caldera floor, culminating in a weak resurgence of ~30 m. We propose that the monitored episodes of uplift represent short‐term stages of the rarely observed incremental growth of a resurgent basaltic caldera
- …