33 research outputs found

    Magnetic and spectral properties of multi-sublattice oxides SrY2O4:Er3+ and SrEr2O4

    Get PDF
    SrEr2O4 is a geometrically frustrated magnet which demonstrates rather unusual properties at low temperatures including a coexistence of long- and short-range magnetic order, characterized by two different propagation vectors. In the present work, the effects of crystal fields (CF) in this compound containing four magnetically inequivalent erbium sublattices are investigated experimentally and theoretically. We combine the measurements of the CF levels of the Er3+ ions made on a powder sample of SrEr2O4 using neutron spectroscopy with site-selective optical and electron paramagnetic resonance measurements performed on single crystal samples of the lightly Er-doped nonmagnetic analogue, SrY2O4. Two sets of CF parameters corresponding to the Er3+ ions at the crystallographically inequivalent lattice sites are derived which fit all the available experimental data well, including the magnetization and dc susceptibility data for both lightly doped and concentrated samples.Comment: 14 pages, 9 figure

    Microwave-Assisted Hydrothermal Synthesis and Annealing of DyF 3

    Get PDF
    The series of DyF3 nanosized samples was synthesized by the colloidal chemistry method. The microwave-assisted hydrothermal treatment was used for the first time for the modification of DyF3 nanoparticles. Transmission electron microscopy images show that the DyF3 nanoparticles have average particle size of about 16–18 nm and the size distribution becomes narrower during the microwave irradiation. The X-ray diffraction analysis shows the narrowing of the diffraction peaks versus microwave treatment time. The experimental data demonstrates restructuring of the nanoparticles and their crystal structure becomes closer to the ideal DyF3 regular structure during the microwave irradiation of colloidal solution. The defect-annealing model of the microwave-assisted hydrothermal modification process is suggested

    Connection Between the Carotid Plaque Instability and Paramagnetic Properties of the Intrinsic Mn<sup>2+</sup> Ions

    Get PDF
    © 2016, Springer Science+Business Media New York.The pulsed W-band (the microwave frequency of 94 GHz, magnetic field of 3.4 T) electron paramagnetic resonance (EPR) comparative studies of a series of 20 atherosclerotic plaques (AP) obtained during carotid endarterectomy in patients with atherosclerosis is presented. The AP stability was established by ultrasound angiography. In all of the obtained species EPR spectra due to the presence of Mn2+ ions in a crystal matrix of hydroxyapatites (HAp) is observed. The existence of HAp in plaque fragments is confirmed by X-ray diffraction analyses. The spectral parameters of Mn2+ are ascribed to two possible locations in the HAp constituent of the atherosclerotic plaques. The difference in the electronic relaxation times of T2e for Mn2+ ions in stable and unstable plaques is observed that can indicate the more homogeneous distribution of Mn2+ in stable plaques as compared to unstable species. The results can be potentially used for the understanding the mechanisms of pathological calcifications and AP stability

    Magnetic properties of the covalent chain antiferromagnet RbFeSe2

    Get PDF
    Single crystals of the ternary iron selenide RbFeSe2 have been investigated by means of x-ray diffraction, magnetic susceptibility, magnetization, and specific-heat measurements as well as by Mossbauer spectroscopy. Built up from linear chains of edge-sharing FeSe4 tetrahedra, RbFeSe2 represents a quasi-one-dimensional antiferromagnet. Below TN = 248 K three-dimensional antiferromagnetic collinear magnetic order sets in, with the magnetic moments oriented perpendicularly to the chain direction. The hyperfine fields determined from our Mossbauer studies reveal strongly reduced magnetic moments. The high-temperature susceptibility data of RbFeSe2 suggest a one-dimensional metallic character along the chains

    To the Intrinsic Magnetism of the Bi<inf>108</inf>Sn<inf>0.02</inf>Sb<inf>0.9</inf>Te<inf>2</inf>S Topological Insulator

    No full text
    © 2019, Pleiades Publishing, Inc. Using Electron Spin Resonance spectroscopy together with the Superconducting Quantum Interference Device magnetometry, we found that the intrinsic magnetic moments, originating from the nonmagnetic structural defects of Bi1.08Sn0.02Sb0.9Te2S topological insulator form the superparamagnetic state. It represents an array of nanoscale single domain ferromagnets randomly distributed in the nonmagnetic media. Their net magnetic polarization in the absence of external magnetic field is completely averaged out. Single domain ferromagnetic particles at elevated temperatures behave magnetically in a manner analogous to the Langevin paramagnetism of moment bearing atoms. The main distinction is that the moment of the particle may be 102—103 times the atomic moment

    To the Intrinsic Magnetism of the Bi<inf>108</inf>Sn<inf>0.02</inf>Sb<inf>0.9</inf>Te<inf>2</inf>S Topological Insulator

    No full text
    © 2019, Pleiades Publishing, Inc. Using Electron Spin Resonance spectroscopy together with the Superconducting Quantum Interference Device magnetometry, we found that the intrinsic magnetic moments, originating from the nonmagnetic structural defects of Bi1.08Sn0.02Sb0.9Te2S topological insulator form the superparamagnetic state. It represents an array of nanoscale single domain ferromagnets randomly distributed in the nonmagnetic media. Their net magnetic polarization in the absence of external magnetic field is completely averaged out. Single domain ferromagnetic particles at elevated temperatures behave magnetically in a manner analogous to the Langevin paramagnetism of moment bearing atoms. The main distinction is that the moment of the particle may be 102—103 times the atomic moment
    corecore