572 research outputs found

    Masked millennial-scale climate variations in South West Africa during the last glaciation

    Get PDF
    To address the connection between tropical African vegetation development and high-latitude climate change we present a high-resolution pollen record from ODP Site 1078 (off Angola) covering the period 50–10 ka BP. Although several tropical African vegetation and climate reconstructions indicate an impact of Heinrich Stadials (HSs) in Southern Hemisphere Africa, our vegetation record shows no response. Model simulations conducted with an Earth System Model of Intermediate Complexity including a dynamical vegetation component provide one possible explanation. Because both precipitation and evaporation increased during HSs and their effects nearly cancelled each other, there was a negligible change in moisture supply. Consequently, the resulting climatic response to HSs might have been too weak to noticeably affect the vegetation composition in the study area. Our results also show that the response to HSs in southern tropical Africa neither equals nor mirrors the response to abrupt climate change in northern Africa

    Initial-state dependence in time-dependent density functional theory

    Full text link
    Time-dependent density functionals in principle depend on the initial state of the system, but this is ignored in functional approximations presently in use. For one electron it is shown there is no initial-state dependence: for any density, only one initial state produces a well-behaved potential. For two non-interacting electrons with the same spin in one-dimension, an initial potential that makes an alternative initial wavefunction evolve with the same density and current as a ground state is calculated. This potential is well-behaved and can be made arbitrarily different from the original potential

    Spin currents and spin dynamics in time-dependent density-functional theory

    Get PDF
    We derive and analyse the equation of motion for the spin degrees of freedom within time-dependent spin-density-functional theory (TD-SDFT). Results are (i) a prescription for obtaining many-body corrections to the single-particle spin currents from the Kohn-Sham equation of TD-SDFT, (ii) the existence of an exchange-correlation (xc) torque within TD-SDFT, (iii) a prescription for calculating, from TD-SDFT, the torque exerted by spin currents on the spin magnetization, (iv) a novel exact constraint on approximate xc functionals, and (v) the discovery of serious deficiencies of popular approximations to TD-SDFT when applied to spin dynamics.Comment: now includes discussion of OEP and GGA; to appear in Phys. Rev. Let

    Quantitative study of anode microstructure related to SOFC stack degradation

    Get PDF
    As the performances of Solid Oxide Fuel Cells (SOFC) get attractive, long term degradation becomes the main issue for this technology. Therefore it is essential to localise the origin of degradation and to understand its processes in order to find solutions and improve SOFC durability. The electrode microstructure ageing, in particular nickel grain coarsening at the anode side, is known to be a major process to cause performance loss. The increase in nickel particle size will diminish the Triple Phase Boundary (TPB), where fuel oxidation takes place, and decrease the anode electronic conductivity. These two effects degrade the electrochemical performance of the fuel electrode. Degradation is defined as the decrease of potential at constant current density with time in %/1000h or mV/1000h. This study is based on HTceramix® anode supported cells tested in stack conditions from 100 to more than 1000 hours. The anode microstructure has been characterized by Scanning Electron Microscopy (SEM). As the back scattered electron yield coefficients of nickel and yttria stabilized zirconia (YSZ) are very close, the contrast of the different phases (Ni, YSZ and pores) is low. Various techniques are used to enhance the contrast. A new technique is presented here using impregnation and SEM observation based on secondary electron yield coefficients to separate the phases. Image treatment and analysis is done with an in-house Mathematica® code. Image treatment follows four steps: 1. inhomogeneous background correction, 2. double thresholding, 3. cleaning of the binary images and 4. reconstruction of a three-phase image. Image analysis gives information about phase proportion, particle size, particle size distribution, contiguity and finally a new procedure is developed to compute TPB density. A model to describe the coarsening of the nickel particles is also developed. The model assumes an exponential growth of the nickel particles. Using a particle population balance, it estimates the growth of the nickel particles and the concomitant drop in the TPB length. This model is in very good agreement with experimental data, especially for relatively low fuel cell operation times (up to 100-200 hours). This model can be used in the estimation of operational parameters of the anode electrode such as the degradation rate using fundamental parameters of the cermet anode like the anode overpotential and the work of adhesion of the nickel particles on the YSZ substrate. This model gives the portion of stack degradation that corresponds to anode performance decrease due to particle sintering. Finally this study gives the possibility to isolate the degradation coming from the anode sintering and compare to the full SOFC stack degradation

    The Status of Clinical Faculty in the Legal Academy: Report of the Task Force on the Status of Clinicians and the Legal Academy

    Get PDF
    In the midst of ongoing debates within the legal academy and the American Bar Association on the need for \u27practice-ready law school graduates through enhanced attention to law clinics and externships and on the status of faculty teaching in those courses, this report identifies and evaluates the most appropriate modes for clinical faculty appointments. Drawing on data collected through a survey of clinical program directors and faculty, the report analyzes the five most identifiable clinical faculty models: unitary tenure track; clinical tenure track; long-term contract; short-term contract; and clinical fellowships. It determines that, despite great strides in the growth of clinical legal education in the last 30 years, equality between clinical and non-clinical faculty remains elusive. Clinical faculty still lag behind non-clinical faculty in security of position and governance rights at most law schools. The report then identifies four core principles that should guide decisions about clinical faculty appointments: 1) clinical education is a foundational and essential component of legal education; 2) the legal academy and profession benefit from full inclusion of clinical faculty on all matters affecting the mission, function, and direction of law schools; 3) there is no justification for creating hierarchies between clinical and non-clinical faculty; and 4) the standards for hiring, retention, and promotion of clinical faculty must recognize and value the responsibilities and methodologies of clinical teaching. The report concludes that these core principles are best realized when full-time clinical faculty are appointed to a unitary tenure track. This conclusion does not ignore the imperfections of a tenure system. However, to the extent that tenure remains the strongest measure of the legal academy\u27s investment in its faculty and is the surest guarantee of academic freedom, inclusion in faculty governance and job security, the report recommends that law schools predominantly place their clinical faculty on dedicated tenure lines. In addition, it recommends that schools implement standards for hiring, promotion, and retention that reflect the teaching responsibilities and methodologies, as well as practice and service obligations, unique to their clinical faculty. To facilitate the development of such standards, the report suggests good practices for the appointment of clinical faculty on a unitary tenure track

    Exchange and Correlation Kernels at the Resonance Frequency -- Implications for Excitation Energies in Density-Functional Theory

    Full text link
    Specific matrix elements of exchange and correlation kernels in time-dependent density-functional theory are computed. The knowledge of these matrix elements not only constraints approximate time-dependent functionals, but also allows to link different practical approaches to excited states, either based on density-functional theory, or on many-body perturbation theory, despite the approximations that have been performed to derive them.Comment: Submitted to Phys. Rev. Lett. (February 4, 1999). Other related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Spatio-temporal, optogenetic control of gene expression in organoids

    Get PDF
    Organoids derived from stem cells become increasingly important to study human development and to model disease. However, methods are needed to control and study spatio-temporal patterns of gene expression in organoids. To this aim, we combined optogenetics and gene perturbation technologies to activate or knock-down RNA of target genes, at single-cell resolution and in programmable spatio-temporal patterns. To illustrate the usefulness of our approach, we locally activated Sonic Hedgehog (SHH) signaling in an organoid model for human neurodevelopment. High-resolution spatial transcriptomic and single-cell analyses showed that this local induction was sufficient to generate stereotypically patterned organoids in three dimensions and revealed new insights into SHH's contribution to gene regulation in neurodevelopment. With this study, we propose optogenetic perturbations in combination with spatial transcriptomics as a powerful technology to reprogram and study cell fates and tissue patterning in organoids
    corecore